留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元方法的摩阻传感器结构设计分析

陈稼宁 尹瑞多 马丙辉 肖尧 穆聪聪 谢晓斌

陈稼宁,尹瑞多,马丙辉,等. 基于有限元方法的摩阻传感器结构设计分析[J]. 计量科学与技术,2021, 65(11): 45-49, 55 doi: 10.12338/j.issn.2096-9015.2021.0141
引用本文: 陈稼宁,尹瑞多,马丙辉,等. 基于有限元方法的摩阻传感器结构设计分析[J]. 计量科学与技术,2021, 65(11): 45-49, 55 doi: 10.12338/j.issn.2096-9015.2021.0141
CHEN Jianing, YIN Ruiduo, MA Binghui, XIAO Yao, MU Congcong, XIE Xiaobin. Analysis of a Structure Design of Skin Friction Sensors Based on FEM[J]. Metrology Science and Technology, 2021, 65(11): 45-49, 55. doi: 10.12338/j.issn.2096-9015.2021.0141
Citation: CHEN Jianing, YIN Ruiduo, MA Binghui, XIAO Yao, MU Congcong, XIE Xiaobin. Analysis of a Structure Design of Skin Friction Sensors Based on FEM[J]. Metrology Science and Technology, 2021, 65(11): 45-49, 55. doi: 10.12338/j.issn.2096-9015.2021.0141

基于有限元方法的摩阻传感器结构设计分析

doi: 10.12338/j.issn.2096-9015.2021.0141
详细信息
    作者简介:

    陈稼宁(1994-),浙江省计量科学研究院技术员,研究方向:小力值计量等,邮箱:krowrof121ylno@163.com

    通讯作者:

    尹瑞多(1980-),浙江省计量科学研究院高级工程师,研究方向:动态力计量、多向力计量等,邮箱:83375301@qq.com

Analysis of a Structure Design of Skin Friction Sensors Based on FEM

  • 摘要: 摩擦阻力是物体在流体中运动时受到总阻力的重要组成部分。由于理论分析的复杂性和实际流场的多样性,摩擦阻力的直接测量技术在理论验证和工业设计等领域起到关键作用。介绍一种面向应变式摩阻传感器弹性体的设计,通过分析平行梁结构摩阻传感器的工作原理,确定传感器孔径、平行梁间距、连接梁厚度是影响性能的主要参数;基于正交实验设计法选取三类参数的代表性组合,采用有限元仿真对贴片区的应变分布情况进行数值计算;通过定义应变区系数和应变-变形比等参数以协调互相矛盾的优化目标,分析各因素对传感器性能的影响,最终确认最优参数组合。
  • 图  1  平行梁传感器及其结构计算简图

    Figure  1.  Schematics of a force sensor with a parallel-beam structure and for its structure calculation

    图  2  全桥式惠斯通电桥

    Figure  2.  Full-bridge Wheatstone bridge circuit

    图  3  平行梁传感器有限元模型

    Figure  3.  The finite element model

    图  4  有限元模型仿真结果

    Figure  4.  The simulation result

    表  1  各因素采用的水平值/mm

    Table  1.   List of factors and their levels

    水平因素
    ChlminhBC
    10.05.02.5
    20.56.05.0
    31.07.07.5
    下载: 导出CSV

    表  2  三因素三水平正交实验组合

    Table  2.   Combination of 3-factor & 3-level orthogonal experiments

    实验序号水平
    ChlminhBC
    1111
    2122
    3133
    4212
    5223
    6231
    7313
    8321
    9332
    下载: 导出CSV

    表  3  Rε-τwPBSPwmaxRS-w的仿真结果

    Table  3.   Simulation results forRε, wPB, SP, wmax and RS-w

    实验序号Rε-τ/×10−8N−1wPB/mmSP/×10−7mm·N−1wmax/×10−4mmRS-w/×10−4
    14.615.002.302.549.05
    26.965.003.484.667.48
    311.965.005.9810.325.79
    46.944.633.213.2110.00
    512.014.175.006.347.89
    626.313.398.9115.905.60
    712.113.304.004.848.26
    826.812.556.8211.405.98
    9104.941.7818.7155.843.35
    下载: 导出CSV

    表  4  Rε-τ的三次目标和与极差/×10−7 N−1

    Table  4.   Sum of results for Rε-τ at each level and the ranges

    水平Rε-τ的三次目标和
    ChlminhBC
    12.352.375.77
    24.534.5811.88
    314.3914.323.61
    极差12.0311.968.28
    下载: 导出CSV

    表  5  wPB的三次目标和与极差/×10−7mm

    Table  5.   Sum of results for wPB at each level and the ranges

    水平wPB的三次目标和
    ChlminhBC
    115.0012.9310.93
    212.1811.7111.42
    37.6310.1712.47
    极差7.372.761.54
    下载: 导出CSV

    表  6  SP的三次目标和与极差/×10−6 mm

    Table  6.   Sum of results for SP at each level and the ranges

    水平SP的三次目标和
    ChlminhBC
    11.180.951.80
    21.711.532.54
    32.953.361.50
    极差1.782.411.04
    下载: 导出CSV

    表  7  RS-w的三次目标和与极差/×10−3 mm

    Table  7.   Sum of results for RS-w at each l evel and the ranges

    水平RS-w的三次目标和
    ChlminhBC
    12.232.732.06
    22.352.142.08
    31.761.472.19
    极差0.591.260.13
    下载: 导出CSV
  • [1] Preston J H. The Determination of Turbulent Skin Friction by Means of Pitot Tubes[J]. Journal of the Royal Aeronautical Society, 1954, 58(518): 109-121. doi: 10.1017/S0368393100097704
    [2] MacLean M, J A Schetz. Numerical Study of Detailed Flow Affecting a Direct Measuring Skin-Friction Gauge[J]. AIAA Journal, 2003, 41(7): 1271-1281. doi: 10.2514/2.2095
    [3] Blasius H. Grenzschichten in flüssigkeitenmitkleinerreibung[J]. Zeitschrift fur Angewandte Mathematic und Physik, 1908, 56(1): 1-37.
    [4] 王雄, 许晓斌, 王南天, 等. 微量摩阻天平旋转加载校准装置研制[J]. 中国测试, 2019, 45(1): 83-87. doi: 10.11857/j.issn.1674-5124.2018100104
    [5] 马洪强, 高贺, 毕志献. 超高声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(4): 83-88. doi: 10.3969/j.issn.1672-9897.2011.04.016
    [6] Naughton J W, DeMillard E, Davidson P. Skin Friction Measurements to Support Viscous Drag Reduction[C]. 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2016.
    [7] Miozzi M, Felice F D, Klein C, et al. Taylor hypothesis applied to direct measurement of skin friction using data from Temperature Sensitive Paint[J]. Experimental Thermal and Fluid Science, 2019, 110(2020): 109913.
    [8] Smith T B. Development and Ground Testing of Direct Measuring Skin Friction Gages for High Enthalpy Supersonic Flight Tests[D]. Virginia Polytechnic Institute and State University, 2001.
    [9] Silvester T B, Morgan R G. Skin-Friction Measurements and Flow Establishment Within a Long Duct at Superorbital Speeds[J]. AIAA Journal, 2015, 46(2): 527-536.
    [10] 吕治国, 李国君, 赵荣娟, 等. 激波风洞高超声速摩阻直接测量技术研究[J]. 实验流体力学, 2013, 27(6): 81-85. doi: 10.3969/j.issn.1672-9897.2013.06.015
    [11] Tiwana M I, Remond S J, Lovell N H. A Review of Tactile Sensing Technologies with Applications in Biomedical Engineering[J]. Sensor and Actuators A: Physical, 2012, 179: 17-31. doi: 10.1016/j.sna.2012.02.051
    [12] Meritt R J, Schetz J A. Skin Friction Sensor Development, Validation, and Application for High-Speed, High-Enthalpy Flow Conditions[J]. Journal of Propulsion and Power, 2016, 32(4): 1-13.
    [13] 赵荣娟, 吕治国, 黄军, 等. 基于压电敏感元件的摩阻天平设计[J]. 空气动力学学报, 2018(4): 555-560. doi: 10.7638/kqdlxxb-2016.0112
    [14] Perez E A A L, Pauliac-Vaujour E, Mouis M. Static finite element modeling for sensor design and processing of an individually contacted laterally-bent piezoelectric nanowire[J]. IEEE Transactions on Nanotechnology, 2016, 15(3): 521-526. doi: 10.1109/TNANO.2016.2549064
    [15] Karna S K, Sahai R. An Overview on Taguchi Method[J]. International Journal of Engineering and Mathematical Sciences, 2012(1): 11-18.
    [16] 方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001: 35-43.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  269
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-18
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回