Research on the Application of a New Water-Cut Test Device for Oil Well in Offshore Platform
-
摘要: 本文研制了一种针对高含水油井且具有离线取样检测功能的新型油井含水化验装置,并在海上某油田得到推广应用。海上平台现场研究结果表明:针对含水率>90%的高含水油井,含水率测定时应用4层复合油水分离膜,测定时间在15 min以内,测定结果与离心法含水率数据对比百分比变化在±1.0%以内,测定结果与专业机构含水率数据对比误差在±0.2%以内,且测定结果更接近现场生产数据。该新型油井含水化验装置操作智能、简便,利用取样体积放大的方式减少井液波动影响,利用复合油水分离膜、真空泵实现了快速油水分离,利用可拆装的原液罐避免了产出液转移过程中的原油粘附损失,利用超疏油涂层避免了原油粘附,利用称重模块减小了读取体积出现的误差。该新型油井含水化验装置满足现场对高含水油井含水率更准、更快、更便捷的测定需求,有利于油井后期调整产液优化及进行侧钻决策。Abstract: A new type of water-cut test device with offline sampling detection function for high water-cut oil wells was developed and applied in an offshore oil field. The results of the filed study on the offshore platform showed that for the high water-cut oil wells with water-cut larger than 90%, four layers of composite oil-water separation membrane should be used for water content determination, and the determination time should be within 15 min so that the percentage change of the determination result is within ±1.0% compared with the centrifugal water content data, and the error of the determination result is within ±0.2% compared with the water content data of professional institutions, and the determination result is closer to the field production data. The operation of new water-cut test device is intelligent and easy to operate. The device reduced the impact of well fluid fluctuations using sampling volume amplification, realized the rapid oil-water separation using a complex oil-water separation membrane and vacuum pump, and prevented the adhesion loss of crude oil in the process of produced fluid transfer using a detachable sampling tank, prevented the adhesion of crude oil using superhydrophobic oil coating, avoided the error of volume reading using the weighing module so that the measurement of water content was more accurate and faster. The new water-cut test device meets the field demand for more accurate, faster, and more convenient determination of water content in high water-cut wells, which is conducive to the later adjustment of oil well production fluid optimization and lateral drilling decision.
-
Key words:
- high water-cut oil well /
- water-cut test /
- oil-water separation membrane /
- intelligent
-
表 1 离心法测定数据对比
Table 1. Comparison of centrifugal test data
阶段 序号 新装置 离心法 新装置与离心法
含水率百分比变化产出液处理 膜片 k值/g 过滤时间 真空度 前期 1 40.32% 97.8% −58.77% 无 1层膜/20 cm/疏油层 18 25 min/2000 g >−60 2 54.64% 97.7% −44.07% 无 18 31 min/2000 g >−60 3 94.33% 94.8% −0.50% 清水剂40 ppm、反向破乳剂50 ppm、70℃水浴加热90 min 18 3 min/2000 g >−60 4 93.76% 96.1% −2.43% 18 12 min/2000 g >−60 5 95.89% 97.8% −1.95% 18 4 min/2000 g >−60 6 96.86% 97.7% −0.86% 18 17 min/2000 g >−60 整改后 7 98.21% 98.0% 0.21% 静置30 min 4层膜/20 cm/海绵层-疏油层-砂芯层-疏油层 52 14 min/2000 g −20~−50 8 99.16% 98.6% 0.57% 静置30 min 52 12 min/2000 g −20~−50 9 96.48% 96.8% −0.33% 静置12 h 52 5 min/2000 g −20~−50 10 98.45% 98.1% 0.36% 静置30 min 6层膜/20 cm/海绵层-疏油层-砂芯层-疏油层-砂芯层-疏油层 60 21 min/2000 g −20~−50 11 98.18% 97.8% 0.39% 静置30 min 6层膜/ 20 cm/疏油层-海绵层-疏油层-砂芯层-疏油层-砂芯层 60 59 min/2000 g −20~−50 12 99.49% 98.6% 0.90% 静置12 h 4层膜/20 cm/海绵层-疏油层-砂芯层-疏油层层-疏油层 52 8 min/2000 g −20~−50 13 97.97% 98.0% −0.03% 静置12 h 52 13 min/2000 g −15~−45 14 95.81% 96.6% −0.82% 静置6 h 52 9 min/2000 g −15~−45 15 97.70% 97.9% −0.20% 静置30 min 52 12 min/2000 g −15~−45 表 2 在线仪表含水数据对比
Table 2. Comparison of water content data from online meters
序号 生产时间 井口温度 井底流温 海默多相流量计 离心法 新装置 1 24 h 68.1℃ 69.6℃ 98.3% 97.8% 98.18% 2 24 h 54.6℃ 54.0℃ 98.3% 98.0% 98.21% 3 24 h 71.4℃ 69.5℃ 98.5% 98.1% 98.45% 4 24 h 65.4℃ 0.0℃ 97.1% 98.1% 97.48% 5 24 h 67.0℃ 68.9℃ 98.3% 98.3% 97.92% 表 3 专业机构数据对比
Table 3. Data comparison from professional institutes
序号 含水率测
定数据含水率专业机
构测定数据专业机构
测定时间含水率测
定误差样品
处理膜片 k值 过滤时间 真空度 1 98.33% 98.49% 59 min/2000 g 0.16% 无 4层膜/20 cm/海绵层-疏油层-砂芯层-疏油层 52 g 12 min/2000 g −15~−45 2 97.62% 97.69% 67 min/2000 g 0.07% 无 7 min/2000 g 3 96.61% 96.80% 62 min/2000 g 0.20% 无 13 min/2000 g -
[1] 王少松, 谈得芳. 新型在线含水分析仪在西北油田的应用[J]. 化工自动化及仪表, 2019, 46(12): 1051-1054. [2] 熊兆洪. 采用离心法测试原油含水量的重要性[J]. 中国仪器仪表, 2018(3): 78-80. [3] 王连庆, 郑红梅, 刘锦晨. 一种新型原油含水率检测仪的设计与开发[J]. 电子测量技术, 2018, 41(22): 49-53. [4] 孙广栋. 原油含水率测试方法研究[D]. 成都: 西南石油大学, 2017. [5] 姜海潮. 射频法原油含水率测量技术研究[D]. 西安: 西安石油大学, 2018. [6] 唐颖, 崔立宏. 原油含水率测量技术综述[J]. 技术装备, 2019(3): 48-51. [7] 高宝元. 原油含水分析仪在线检定装置研发及应用[J]. 仪器仪表, 2018, 54(3): 54-57. [8] 赵雪英, 李鹏, 金喜平. 原油含水率的测试方法[J]. 辽宁大学学报, 2003, 30(2): 145-146. [9] 董鹏敏, 徐新宇, 叶子浩, 等. 原油含水在线检测影响因素的研究[J]. 云南化工, 2019, 46(12): 53-55. [10] 贺国强. 原油含水率测量技术研究[D]. 西安: 西安石油大学, 2017. [11] 王宝峰. 原油含水在线监测技术[J]. 油气田地面工程, 2005, 24(3): 40-42. [12] 杜馨, 孙晓荣, 刘翠玲, 等. 原油含水率的红外光谱快速检测技术[J]. 中国测试, 2020, 46(1): 50-55. [13] 张国军, 申龙涉, 齐瑞, 等. 原油含水率测量技术现状与发展[J]. 当代化工, 2012, 41(1): 59-62. [14] 杨瑞斌, 宋章帅. 原油含水率测量分析原理与系统应用[J]. 山西科技, 2011, 26(2): 103-104. doi: 10.3969/j.issn.1004-6429.2011.02.048 [15] 李明璐. 原油含水化验分析计量方法的研究[J]. 化工管理, 2020(2): 30-31. doi: 10.3969/j.issn.1008-4800.2020.06.020