Research on Optimization Method of Signal-to-Noise Ratio in Optical Measurement Systems
-
摘要: 在光学测量中常常受低信噪比问题的影响,导致测量结果的不确定度增大。近红外波段双向反射分布函数(BRDF)的测量由于红外信号强度偏弱,易受环境干扰,面临的低信噪比问题尤其突出。光学测量系统的信噪比问题一般产生自探测系统,对于红外测量系统来说,经常使用斩波器、锁相放大器进行弱信号测量,但同时也引入了噪声问题。因此,本文针对近红外波段BRDF测量信噪比问题,从探测器、斩波器、锁相放大器三部分着手,分析噪声来源并针对性地提出抑制方法与优化措施,以提升信号信噪比。优化后的测量系统较优化前抗噪声能力提高,可重复性由优化前的2.1%提升到1.6%。Abstract: Optical measurement are often affected by low signal-to-noise ratios (SNR), resulting in larger measurement uncertainty. Measurement of the bidirectional reflectance distribution function (BRDF) in the near-infrared is particularly vulnerable to environmental interference due to weak infrared signals. The signal-to-noise ratio problem of optical measurement systems generally arises from detection systems. For infrared measurement systems, choppers and lock-in amplifiers are often used for weak signal measurement, but noise problems are also introduced at the same time. Therefore, this article focuses on the SNR of BRDF measurement in the near-infrared, aiming at the detector, chopper and lock-in amplifier, analyzing the source of noise, and proposing suppression methods and optimization measures to improve the signal-to-noise ratio. The optimized measurement system has improved anti-noise ability compared with that before optimization, and the repeatability has been improved from 2.1% to 1.6%.
-
表 1 锁相放大器参数设定
Table 1. Lock-in amplifier parameters
参数类型 参数值 时间常数 1 s 灵敏度 100 mV(测量光源) 100 μV(测量漫反射) 存储模式 高噪声 同步 关 滤波器选择 24 dB/oct 参考频率 780 Hz -
[1] HEATHER J P, CLARENCE J Z, THOMAS A G, et al. Tunable supercontinuum fiber laser source for BRDF measurements in the STARR II gonioreflectometer[C]. Reflection, scattering, and diffraction from surfaces III. SPIE, 2012: 1-13. [2] HOWARD W Y, DAVID W A, GEORGE P E, et al. The Extension of the NIST BRDF Scale from 1100 nm to 2500 nm[C]. SPIE Conference on Earth Observing Systems. SPIE, 2009: 745204: 1-745204: 12. [3] HEATHER J P, CLARENCE J Z, THOMAS A G. The NIST Robotic Optical Scatter Instrument (ROSI) and its Application to BRDF Measurements of Diffuse Reflectance Standards for Remote Sensing[C]. Earth observing systems XVIII: Conference on earth observing systems XVIII, San Diego, California, United States: SPIE, 2013: 886615.1-886615.12. [4] GRUSEMANN U, HOPE A, HUNERHOFF D. New robot-based gonioreflectometer for measuring spectral diffuse reflection[J]. International Journal of Scientific, 2006, 43(2): S11-S16. [5] 赵敏杰, 福祺, 陆亦怀, 等. 星载石英漫反射板双向反射分布函数实验测量研究[J]. 光谱学与光谱分析, 2016, 36(5): 1565-1570. [6] 李新, 郑小兵, 寻丽娜, 等. 室外高光谱BRDF自动测量系统的设计[J]. 光学技术, 2008, 34(2): 262-264,268. doi: 10.3321/j.issn:1002-1582.2008.02.032 [7] 李俊麟, 张黎明, 司孝龙, 等. 基于六轴串联机械手的双向反射分布函数测量装置[J]. 光学精密工程, 2014, 22(11): 2983-2989. [8] 陈洪耀, 张黎明, 施家定, 等. 高精度星上定标漫射板双向反射分布函数绝对测量系统研究[J]. 大气与环境光学学报, 2014, 9(1): 72-80. doi: 10.3969/j.issn.1673-6141.2014.01.011 [9] 刘若凡, 张宪亮, 苏红雨, 等. 光学双向反射分布函数测量装置的研究[C]. 2015年光与计量学术交流会, 2015: 117-122. [10] 陆敏, 王治乐, 高萍萍, 等. 用于快速BRDF测量的子孔径扫描傅里叶变换系统[J]. 光学学报, 2020, 40(13): 189-196. [11] Wang J, Wang J B, Long Z Y, et al. Design and application of a cooling device based on peltier effect coupled with electrohydrodynamics[J]. International Journal of Thermal Sciences, 2021, 162: 106761. [12] Suhani B , Bhatia S. A review on thermoelectric cooling technology and its applications[J]. IOP Conference Series: Materials Science and Engineering, 2020, 912(4): 042004. [13] 葛小凤, 陈亚军. 锁相放大器对微弱信号的检测研究[J]. 信息技术, 2016(12): 97-100. [14] 陈贺. 天基空间目标观测系统BRDF检测装置研究[D]. 长春: 长春理工大学, 2019. [15] 张毅刚, 傅平, 王丽. 采用数字相关法测量相位差[J]. 计量学报, 2000, 21(3): 216-221. doi: 10.3321/j.issn:1000-1158.2000.03.011 [16] 张磊, 王文青, 张伟华. 非同频信号锁相放大技术研究[J]. 电子世界, 2021(5): 90-92. [17] 叶晓明, 丁士俊, 师会生. 测量误差理论的真值中心论和测得值中心论[J]. 计量科学与技术, 2021, 65(3): 19-27. [18] 靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131.