Peptide Purity Measurement Technique Based on Organic Elemental Analysis
-
摘要: 多肽的纯度测量是临床化学、药物化学、食品化学等领域中多肽量值溯源的关键。除质量平衡法、核磁法、水解法外,有机元素分析技术是化学计量中用于多肽纯度测量的一种新手段。然而,对该技术的详细介绍鲜有报道。本文建立了一种基于氮、硫等元素分析的多肽纯度测量技术,采用缩宫素作为典型样品,首先对样品中氮、硫元素进行分析,扣减相关结构杂质中氮、硫元素的含量得到主成分中氮、硫元素的含量,利用氮、硫元素在缩宫素分子中的原子个数及分子量信息,通过计算获得了缩宫素的纯度结果。与权威方法质量平衡法的测量结果相比,相对标准偏差小于1%。本文建立的杂质校正有机元素分析技术结果准确、可靠,可用于多肽纯度标准物质定值。Abstract: Purity measurement of the peptide is the key to building metrological traceability for the measurement value of peptides in clinical chemistry, pharmaceutical chemistry, food chemistry, and other fields. In addition to the mass balance method, nuclear magnetic resonance method, and hydrolysis method, organic elemental analysis is a new technique for measuring the purity of peptides in chemical metrology. However, a detailed introduction to this technique is yet to be reported. In this paper, a technique for peptide purity measurement based on the analysis of nitrogen, sulfur, and other elements has been established. Using oxytocin as a typical sample, the nitrogen and sulfur elements in the sample were analyzed, the content of nitrogen and sulfur elements in the main component was obtained by deducting the content of nitrogen and sulfur elements in the relevant structural impurities, and the purity results of the peptide were obtained by calculation using the information of the number of atoms and molecular weight of nitrogen and sulfur elements in the molecule of the peptide. The relative standard deviation was less than 1% compared with the measurement results of the authoritative mass balance method. The results of the impurity-corrected organic elemental analysis technique established in this paper are accurate and reliable and can be used for peptide purity standard substance determination.
-
Key words:
- peptide /
- purity measurement /
- elemental analysis /
- nitrogen /
- sulfur
-
表 1 杂质中氮元素含量的计算结果
Table 1. Calculated nitrogen content in the impurities
名称 氮含量 mg/g 不确定度 mg/g OT acid 2.39 0.39 [Asp5] OT 1.04 0.18 [Glu4] OT 0.85 0.14 [Cya1,Cya6] OT 0.161 0.022 endo-Gly10a-OT 0.126 0.022 ent-OT1 0.115 0.020 [Csa1, Cya6] OT 0.092 0.017 OT+O 0.090 0.014 [Cya1, Csa6] OT 0.0338 0.0046 endo-βAln9a-OT 0.0343 0.0071 des-Gly9-OT 0.0149 0.0032 endo-Asn5a-OT 0.0087 0.0087 des-Pro7-OT 0.0085 0.0085 endo-Gln4a-OT 0.0086 0.0086 TFA OT 0.0076 0.0076 ent-OT 2 0.0083 0.0083 ent-OT 3 0.0083 0.0083 Unk491a 0.0086 0.0086 Unk491b 0.0086 0.0086 α dimer 0.0083 0.0083 β dimer 0.0083 0.0083 表 2 杂质中硫元素含量的计算结果
Table 2. Calculated sulfur content in the impurities
名称 硫含量 mg/g 不确定度 mg/g OT acid 1.00 0.16 [Asp5] OT 0.434 0.076 [Glu4] OT 0.352 0.058 [Cya1,Cya6] OT 0.0613 0.0085 endo-Gly10a-OT 0.0445 0.0077 ent-OT1 0.0438 0.0078 [Csa1, Cya6] OT 0.0352 0.0066 OT+O 0.0345 0.0053 [Cya1, Csa6] OT 0.0129 0.0018 endo-βAln9a-OT 0.0121 0.0025 des-Gly9-OT 0.0068 0.0015 endo-Asn5a-OT 0.0029 0.0029 des-Pro7-OT 0.0035 0.0035 endo-Gln4a-OT 0.0028 0.0028 TFA OT 0.0029 0.0029 ent-OT 2 0.0032 0.0032 ent-OT 3 0.0032 0.0032 Unk491a 0.0033 0.0033 Unk491b 0.0033 0.0033 α dimer 0.0032 0.0032 β dimer 0.0032 0.0032 -
[1] JOSEPHS R D, STOPPACHER N, WESTWOOD S, et al. Concept paper on SI value assignment of purity - Model for the classification of peptide/protein purity determinations[J]. Journal of Chemical Metrology, 2017, 11(1): 1-8. doi: 10.25135/jcm.1.17.02.030 [2] JOSEPHS R D, LI M, SONG D, et al. Key comparison study on peptide purity-synthetic human C-peptide[J]. Metrologia, 2017, 54(1A): 08007. doi: 10.1088/0026-1394/54/1A/08007 [3] JOSEPHS R D, LI M, SONG D, et al. Pilot study on peptide purity-synthetic human C-peptide[J]. Metrologia, 2017, 54(1A): 080011. [4] 李明, 李红梅, 李孟婉. C肽的国际比对及C肽纯度标准物质的研制[J]. 计量技术, 2020(9): 112-114. [5] JOSEPHS R D, LI M, DAIREAUX A, et al. Key comparison study on peptide purity - synthetic oxytocin[J]. Metrologia, 2020, 57(1A): 08014. doi: 10.1088/0026-1394/57/1A/08014 [6] JOSEPHS R D, LI M, DAIREAUX A, et al. Pilot study on peptide purity - synthetic oxytocin[J]. Metrologia, 2020, 57(1A): 08016. doi: 10.1088/0026-1394/57/1A/08016 [7] LI M, JOSEPHS R D, CHOTEAU T, et al. Identification and accurate quantification of structurally-related peptide impurities for synthetic oxytocin by liquid chromatography–high resolution mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2021, 413(7): 1861-1870. doi: 10.1007/s00216-021-03154-5 [8] WANG S, WU P, LI M, et al. Mass balance method for SI-traceable purity assignment of synthetic oxytocin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207: 114401. doi: 10.1016/j.jpba.2021.114401 [9] JOSEPHS R D, STOPPACHER N, DAIREAUX A, et al. State-of-the-art and trends for the SI traceable value assignment of the purity of peptides using the model compound angiotensin I[J]. Trends in Analytical Chemistry, 2018, 101: 108-119. doi: 10.1016/j.trac.2017.09.026 [10] ZHANG W, HUANG T, LI H, et al. Purity Measurement of Human C-Peptide by High Performance Liquid Chromatography and Quantitative Nuclear Magnetic Resonance International[J]. Journal of Peptide Research and Therapeutics, 2018, 24: 391-396. doi: 10.1007/s10989-017-9620-6 [11] HUANG T, ZHANG W, LI H, et al. High performance liquid chromatography-Quantitative nuclear magnetic resonance-High performance liquid chromatography for purity measurement of human insulin[J]. Journal of Liquid Chromatography & Related Technologies, 2018, 41(4): 170-179. [12] BROS P, JOSEPHS R D, STOPPACHER N, et al. Impurity determination for hepcidin by liquid chromatography-high resolution and ion mobility mass spectrometry for the value assignment of candidate primary calibrators[J]. Analytical and Bioanalytical Chemistry, 2017, 409(10): 2559-2567. doi: 10.1007/s00216-017-0202-4 [13] WU P, YE S, LI M, et al. Impurities identification and quantification for arginine vasopressin by liquid chromatography-high resolution mass spectrometry[J]. Rapid Communication in Mass Spectrometry, 2020, 34(12): e8799. [14] WU P, LI M, KAN Y, et al. Impurities identification and quantification for calcitonin salmon by liquid chromatography-high resolution mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186: 113271. doi: 10.1016/j.jpba.2020.113271 [15] JOSEPHS R D, MARTOS G, LI M, et al. Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment – A review[J]. Metrologia, 2019, 56(4): 044006. doi: 10.1088/1681-7575/ab27e5