Performance Study of Pump-Driven Loop Heat Pipe Energy Recovery Device
-
摘要: 泵驱动回路热管能量回收装置是一种空调排风能量回收装置,它综合了中间热媒式和回路热管式换热器的优点,能够适应管路布置复杂的场所。为研究该装置的性能,搭建了泵驱动回路热管能量回收装置实验系统,提出了换热量、温度效率、性能系数3个装置性能评价参数,考虑室内外温差ΔT、工质质量流量
$ m $ 、换热器换热面积A和工质种类4种因素对该装置性能的影响。通过测试不同室内外温差、工质质量流量、换热器换热面积下装置的换热量、温度效率、性能系数的数值,得出它们之间的变化关系,得到最优运行方案,为该类装置的设计和运行提供指导和参考。Abstract: Pump-driven loop heat pipe energy recovery device is an air conditioning energy recovery device, which integrates the advantages of intermediate heat medium and loop heat pipe heat exchangers and is suitable for complex pipeline layouts. In order to study the performance of the device, an experimental system for the pump-driven loop heat pipe energy recovery device was set up, and three performance evaluation coefficients, heat exchange, temperature efficiency, and performance coefficient were proposed, and the effects of four factors on the performance of the device, including temperature difference ΔT, mass flow rate m, heat exchange area A, and working medium, were considered. By testing the values of heat exchange, temperature efficiency, performance coefficient under different temperature differences, mass flow rate, and exchange area, the relationship between them and optimal operation scheme were obtained, which provided guidance and reference for the design and operation of such devices. -
表 1 测试仪器的规格参数
Table 1. Parameters of the instruments
名称 量程 精度 铂电阻 −40℃~60℃ ±(0.10+0.0017×|读数|)℃ 压力变送器 80~120 kPa ±0.20% kPa 差压变送器 −50~450 Pa ±0.2% Pa 数字功率计 0~20 A ±(0.1%×读数+0.1%×量程) A 0~300 V ±(0.1%×读数+0.1%×量程) V 0~6 kW ±(0.1%×读数+0.1%×量程) kW 0~100 Hz ±(0.06%×读数) Hz PID 控制器 −150℃~150℃ ±0.1℃ 数据采集设备 0~100 mA ±(0.03%×读数+0.005%×量程) A 0~10 V ±(0.002%×读数+0.0005%×量程) V −40℃~60℃ ±0.06℃ -
[1] 任洪波, 刘家明, 吴琼, 等. 城市空间结构对区域分布式能源系统节能减排效果的影响分析[J]. 暖通空调, 2018, 48(3): 29-34,14. [2] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. [3] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. [4] 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24. [5] 郭施宏, 王雪纯. 中国迈向“双碳”目标的政策执行保障机制研究——来自低碳试点城市的实证经验[J/OL]. 北京工业大学学报(社会科学版): 1-12[2021-09-06]. http://kns.cnki.net/kcms/detail/11.4558.g.20210830.1711.014.html. [6] 燕达, 陈友明, 潘毅群, 等. 我国建筑能耗模拟的研究现状与发展[J]. 建筑科学, 2018, 34(10): 130-138. [7] 成伟, 徐定华, 李长武, 等. 基于物联网的空压机能效在线检测系统[J]. 计量科学与技术, 2020(12): 4-8. [8] 杨文领. 基于BIM技术的绿色建筑能耗评价[J]. 城市发展研究, 2016, 23(3): 14-17,24. [9] 刘爽爽, 王钧, 许晔, 等. 基于建筑能耗特征的城市建筑碳减排研究——以深圳市为例[J]. 北京大学学报(自然科学版), 2018, 54(1): 125-136. [10] 刘良江, 王晋威, 李庆先, 等. 中央空调便携式能效检测装置及不确定度评定[J]. 计量科学与技术, 2020(6): 23-27. [11] 李鑫悦, 陈淑琴, 李鸿亮, 等. 应用数据挖掘的高校教学建筑空调使用及其能耗分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1677-1689. [12] 王定奥, 刘清惓, 戴伟, 等. 基于BP神经网络的空调能耗预测与监控系统[J]. 现代电子技术, 2019, 42(22): 140-144. [13] 李婷, 李建双, 缪东晶, 等. 温度条件对大尺寸测量装置精度影响的研究[J]. 计量学报, 2019, 40(6): 975-979. doi: 10.3969/j.issn.1000-1158.2019.06.06 [14] 薛殿华. 空气调节[M]. 北京: 清华大学出版社, 1991. [15] 袁旭东, 柯莹, 王鑫. 空调系统排风热回收的节能性分析[J]. 制冷与空调, 2007(1): 76-81. doi: 10.3969/j.issn.1009-8402.2007.01.018 [16] 杨光, 汤广发, 郭岩杰, 等. 小型热回收装置的可行性研究[J]. 建筑热能通风空调, 2005(3): 56-59,75. doi: 10.3969/j.issn.1003-0344.2005.03.014 [17] 马国远, 段未, 周峰. 泵驱动回路热管能量回收装置的工作特性[J]. 北京工业大学学报, 2016, 42(7): 1095-1101. [18] 郭勇, 蔡婉婷, 廖坚卫. 广州市某办公楼转轮热回收系统技术经济分析[J]. 建筑热能通风空调, 2016, 35(1): 67-69,103. doi: 10.3969/j.issn.1003-0344.2016.01.017 [19] 陈洁, 曹家枞. 空调排风能量回收用热管换热器的优化设计[J]. 制冷与空调, 2007(3): 44-47. doi: 10.3969/j.issn.1009-8402.2007.03.011 [20] 张仕杰, 李准, 周峰, 等. 低全球变暖潜能工质热管换热器性能及可用能分析[J]. 计量学报, 2020, 41(12A): 41-46.