[1] |
PETER J M, DAVID B N, BARRY N T, et al. Data and analysis for the CODATA 2017 special fundamental constants adjustment[J]. Metrologia, 2018, 55(1): 125-132. doi: 10.1088/1681-7575/aa99bc
|
[2] |
STOCK M, BARAT P, PINOT P, et al. A comparison of future realizations of the kilogram[J]. Metrologia, 2018, 55(1): 1-7. doi: 10.1088/1681-7575/aa9a7e
|
[3] |
KNOPF D, WIEDENHöFER T, LEHRMANN K, et al. A quantum of action on a scale? Dissemination of the quantum based kilogram[J]. Metrologia, 2019, 56(2): 024003. doi: 10.1088/1681-7575/ab0851
|
[4] |
LIEBISCH T C, STENGER J, ULLRICH J. Understanding the revised SI: Background, consequences, and perspectives[J]. Annalen der Physik, 2019, 531(5): 1800339. doi: 10.1002/andp.201800339
|
[5] |
段宇宁, 刘旭红. 漫谈国际单位制变革[J]. 计量技术, 2019(5): 3-7.
|
[6] |
STOCK M, FANG H. Report on the CCM key comparison of kilogram realizations CCM. M-K8.2019[J]. Metrologia, 2020, 57(1A): 07030. doi: 10.1088/0026-1394/57/1A/07030
|
[7] |
DAVIDSON S, STOCK M. Beginning of a new phase of the dissemination of the kilogram[J]. Metrologia, 2021, 58(3): 033002. doi: 10.1088/1681-7575/abef9f
|
[8] |
罗志勇, 王金涛, 刘翔, 等. 阿伏加德罗常数测量与千克重新定义[J]. 计量学报, 2018, 39(3): 377-380. doi: 10.3969/j.issn.1000-1158.2018.03.18
|
[9] |
NEWELL D B, CABIATI F, FISCHER J, et al. The CODATA 2017 values of h, e, k, and N A for the revision of the SI[J]. Metrologia, 2018, 55(1): 6-13. doi: 10.1088/1681-7575/aa950a
|
[10] |
PAVESE F. The New SI and the CODATA recommended values of the fundamental constants 2017 [J]. physics, 2018, 53(6): 151203668.
|
[11] |
李正坤, 白洋, 许金鑫, 等. 中国计量院在千克重新定义方面的工作和贡献[J]. 计量技术, 2019(5): 28-33.
|
[12] |
ZHANG Z, HE Q, LI Z. An approach for improving the watt balance [C]. Proceedings of the 2006 Conference on Precision Electric Measurements Torino, 2006.
|
[13] |
ZHENGKUN L, YANG B, JINXIN X, et al. The upgrade of NIM-2 joule balance since 2017[J]. Metrologia, 2020, 57(5): 055007. doi: 10.1088/1681-7575/ab9211
|
[14] |
WANG D, LIU Y, BAI Y, et al. Modeling and design of an overlapped-flexure hinge for joule balance[J]. Rev Sci Instrum, 2019, 90(8): 085111. doi: 10.1063/1.5097458
|
[15] |
QIAN L, XU J, LI Z, et al. The interaction between the magnetized coil-suspension system and the compensation coil in the joule balance[J]. Metrologia, 2020, 57(4): 045010. doi: 10.1088/1681-7575/ab81e3
|
[16] |
XU J, QIAN L, LI Z. The Magnetization Effect in the Joule Balance with Compensation Coil [C]. Proceedings of the 2020 Conference on Precision Electromagnetic Measurements (CPEM), 2020.
|
[17] |
BAI Y, WANG D, LI Z, et al. Automatic alignment technique for suspended coil in Joule balance[J]. Metrologia, 2021, 58(6): 1-10.
|
[18] |
XU J, ZHANG Z, LI Z, et al. A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM[J]. Metrologia, 2016, 53(1): 86-97. doi: 10.1088/0026-1394/53/1/86
|
[19] |
LI Z, ZHANG Z, LU Y, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017, 54(5): 763-774. doi: 10.1088/1681-7575/aa7a65
|
[20] |
BAI Y, HU P, LU Y, et al. A Six-Axis Heterodyne Interferometer System for the Joule Balance[J]. IEEE Trans Instrum Meas, 2017, 66(6): 1579-1585. doi: 10.1109/TIM.2016.2634758
|
[21] |
BAI Y, LU Y, LI Z, et al. A Parasitic Displacement Measurement System for Suspended Coil in Joule Balance[J]. IEEE Trans Instrum Meas, 2019, 68(6): 2237-2245. doi: 10.1109/TIM.2018.2872448
|
[22] |
YANG H, LU Y, HU P, et al. Measurement and control of the movable coil position of a joule balance with a system based on a laser heterodyne interferometer[J]. Meas Sci Technol, 2014, 25(6): 233-243.
|
[23] |
JäGER G. Limits of precision measurements based on interferometers[C]. Proceedings of the Fourth International Symposium on Precision Mechanical Measurements, 2008.
|
[24] |
MURALIKRISHNAN B, ZIEBART M, ROBSON S, et al. Recent developments in large-scale dimensional metrology[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2009, 223(6): 571-595. doi: 10.1243/09544054JEM1284
|
[25] |
JAEGER G. Limitations of precision length measurements based on interferometers[J]. Measurement, 2010, 43(5): 652-658. doi: 10.1016/j.measurement.2009.12.030
|
[26] |
MANSKE E, JäGER G, HAUSOTTE T, et al. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Meas Sci Technol, 2012, 23(7): 074001. doi: 10.1088/0957-0233/23/7/074001
|
[27] |
刁晓飞. 基于空间分离的高速外差激光干涉测量若干关键技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[28] |
GILLMER S R, SMITH R C G, WOODY S C, et al. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration[J]. Meas Sci Technol, 2014, 25(7): 075205. doi: 10.1088/0957-0233/25/7/075205
|
[29] |
WANG YC, SHYU LH, TUNG PC, et al. Optimization of the optical parameters in Fabry-Perot interferometer [C]. Proceedings of the Engineering for a Changing World, 2017.
|
[30] |
YOKOYAMA S, HORI Y, YOKOYAMA T, et al. A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error[J]. Precision Engineering, 2018, 54: 206-211. doi: 10.1016/j.precisioneng.2018.04.020
|
[31] |
YOON S, PARK Y, CHO K. A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry[J]. Opt Express, 2013, 21(18): 020722. doi: 10.1364/OE.21.020722
|
[32] |
杨宏兴, 谭久彬, 胡鹏程, 等. 基于实时监测的激光外差干涉仪闲区误差自动补偿[J]. 光电子激光, 2008, 19(7): 934-937.
|
[33] |
BAI Y, LIU Y, LU Y, et al. Stability improvement for coil position locking of joule balance[J]. Metrologia, 2017, 54(4): 461-467. doi: 10.1088/1681-7575/aa6eea
|
[34] |
EDLéN B. The Refractive Index of Air[J]. Metrologia, 1966, 2(2): 71-80. doi: 10.1088/0026-1394/2/2/002
|
[35] |
钱璐帅, 李正坤, 白洋, 等. 面向能量天平同步测量的磁链差测量方法研究[J]. 计量学报, 2021, 42(9): 1121-1127. doi: 10.3969/j.issn.1000-1158.2021.09.01
|
[36] |
YU X, ZHANG T, ELLIS J D. Absolute air refractive index measurement and tracking based on variable length vacuum cell[J]. Optical Engineering, 2016, 55(6): 064112. doi: 10.1117/1.OE.55.6.064112
|