留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能量天平激光干涉测量系统闲区长度测量方法研究

白洋 鲁云峰 廖福剑 王越 李正坤

白洋,鲁云峰,廖福剑,等. 能量天平激光干涉测量系统闲区长度测量方法研究[J]. 计量科学与技术,2022, 66(4): 34-39 doi: 10.12338/j.issn.2096-9015.2021.0586
引用本文: 白洋,鲁云峰,廖福剑,等. 能量天平激光干涉测量系统闲区长度测量方法研究[J]. 计量科学与技术,2022, 66(4): 34-39 doi: 10.12338/j.issn.2096-9015.2021.0586
BAI Yang, LU Yunfeng, LIAO Fujian, WANG Yue, LI Zhengkun. Research on Dead-Path Measurement in Interferometer System of Joule Balance[J]. Metrology Science and Technology, 2022, 66(4): 34-39. doi: 10.12338/j.issn.2096-9015.2021.0586
Citation: BAI Yang, LU Yunfeng, LIAO Fujian, WANG Yue, LI Zhengkun. Research on Dead-Path Measurement in Interferometer System of Joule Balance[J]. Metrology Science and Technology, 2022, 66(4): 34-39. doi: 10.12338/j.issn.2096-9015.2021.0586

能量天平激光干涉测量系统闲区长度测量方法研究

doi: 10.12338/j.issn.2096-9015.2021.0586
基金项目: 国家自然科学基金青年基金资助项目(51805507)。
详细信息
    作者简介:

    白洋(1988-),中国计量科学研究院副研究员,研究方向:千克量子化定义与复现,邮箱:baiyang@nim.ac.cn

    通讯作者:

    李正坤(1977-),中国计量科学研究院研究员,研究方向:电磁计量与千克新定义复现,邮箱:lzk@nim.ac.cn

Research on Dead-Path Measurement in Interferometer System of Joule Balance

  • 摘要: 闲区误差是激光干涉测量系统中一项重要的误差来源,但闲区长度难以准确测量。能量天平是我国溯源至普朗克常数的质量测量装置,在该装置中激光干涉测量系统用于对悬挂线圈和激励磁体的相对位移进行测量,但较长的光学闲区影响了能量天平装置在空气环境工作时的位移测量准确性。针对上述问题,本文提出了基于真空空气光程差测量的光学闲区长度测量方法,该方法利用真空系统改变测量光路所在的气压,测量由空气折射率变化引入的光程差,进而计算激励干涉光路与悬挂线圈干涉光路之间光学闲区的长度。该方法可以将光学闲区长度测量不确定度由毫米量级缩小至微米量级。另外,本文利用光学闲区长度表征的绝对距离,对能量天平激励磁体和悬挂线圈的竖直方向初始相对位置进行了测量,以确定二者竖直方向的相对零位。
  • 图  1  能量天平激光干涉测量系统

    Figure  1.  Laser interferometer system in joule balance

    图  2  双轴干涉镜组

    Figure  2.  Dual-axis laser interferometer

    图  3  激光干涉位移测量系统的光学闲区示意图

    Figure  3.  Optical dead-path in laser interferometer system

    图  4  能量天平光学闲区示意图

    Figure  4.  Optical dead-path in joule Balance

    图  5  真空/空气环境光程差测量实验结果

    Figure  5.  Optical path difference between vacuum and atmosphere environment

    图  6  激励磁体与悬挂线圈的中心距

    Figure  6.  Center to center difference between exciting magnet and suspended coil

  • [1] PETER J M, DAVID B N, BARRY N T, et al. Data and analysis for the CODATA 2017 special fundamental constants adjustment[J]. Metrologia, 2018, 55(1): 125-132. doi: 10.1088/1681-7575/aa99bc
    [2] STOCK M, BARAT P, PINOT P, et al. A comparison of future realizations of the kilogram[J]. Metrologia, 2018, 55(1): 1-7. doi: 10.1088/1681-7575/aa9a7e
    [3] KNOPF D, WIEDENHöFER T, LEHRMANN K, et al. A quantum of action on a scale? Dissemination of the quantum based kilogram[J]. Metrologia, 2019, 56(2): 024003. doi: 10.1088/1681-7575/ab0851
    [4] LIEBISCH T C, STENGER J, ULLRICH J. Understanding the revised SI: Background, consequences, and perspectives[J]. Annalen der Physik, 2019, 531(5): 1800339. doi: 10.1002/andp.201800339
    [5] 段宇宁, 刘旭红. 漫谈国际单位制变革[J]. 计量技术, 2019(5): 3-7.
    [6] STOCK M, FANG H. Report on the CCM key comparison of kilogram realizations CCM. M-K8.2019[J]. Metrologia, 2020, 57(1A): 07030. doi: 10.1088/0026-1394/57/1A/07030
    [7] DAVIDSON S, STOCK M. Beginning of a new phase of the dissemination of the kilogram[J]. Metrologia, 2021, 58(3): 033002. doi: 10.1088/1681-7575/abef9f
    [8] 罗志勇, 王金涛, 刘翔, 等. 阿伏加德罗常数测量与千克重新定义[J]. 计量学报, 2018, 39(3): 377-380. doi: 10.3969/j.issn.1000-1158.2018.03.18
    [9] NEWELL D B, CABIATI F, FISCHER J, et al. The CODATA 2017 values of h, e, k, and N A for the revision of the SI[J]. Metrologia, 2018, 55(1): 6-13. doi: 10.1088/1681-7575/aa950a
    [10] PAVESE F. The New SI and the CODATA recommended values of the fundamental constants 2017 [J]. physics, 2018, 53(6): 151203668.
    [11] 李正坤, 白洋, 许金鑫, 等. 中国计量院在千克重新定义方面的工作和贡献[J]. 计量技术, 2019(5): 28-33.
    [12] ZHANG Z, HE Q, LI Z. An approach for improving the watt balance [C]. Proceedings of the 2006 Conference on Precision Electric Measurements Torino, 2006.
    [13] ZHENGKUN L, YANG B, JINXIN X, et al. The upgrade of NIM-2 joule balance since 2017[J]. Metrologia, 2020, 57(5): 055007. doi: 10.1088/1681-7575/ab9211
    [14] WANG D, LIU Y, BAI Y, et al. Modeling and design of an overlapped-flexure hinge for joule balance[J]. Rev Sci Instrum, 2019, 90(8): 085111. doi: 10.1063/1.5097458
    [15] QIAN L, XU J, LI Z, et al. The interaction between the magnetized coil-suspension system and the compensation coil in the joule balance[J]. Metrologia, 2020, 57(4): 045010. doi: 10.1088/1681-7575/ab81e3
    [16] XU J, QIAN L, LI Z. The Magnetization Effect in the Joule Balance with Compensation Coil [C]. Proceedings of the 2020 Conference on Precision Electromagnetic Measurements (CPEM), 2020.
    [17] BAI Y, WANG D, LI Z, et al. Automatic alignment technique for suspended coil in Joule balance[J]. Metrologia, 2021, 58(6): 1-10.
    [18] XU J, ZHANG Z, LI Z, et al. A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM[J]. Metrologia, 2016, 53(1): 86-97. doi: 10.1088/0026-1394/53/1/86
    [19] LI Z, ZHANG Z, LU Y, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017, 54(5): 763-774. doi: 10.1088/1681-7575/aa7a65
    [20] BAI Y, HU P, LU Y, et al. A Six-Axis Heterodyne Interferometer System for the Joule Balance[J]. IEEE Trans Instrum Meas, 2017, 66(6): 1579-1585. doi: 10.1109/TIM.2016.2634758
    [21] BAI Y, LU Y, LI Z, et al. A Parasitic Displacement Measurement System for Suspended Coil in Joule Balance[J]. IEEE Trans Instrum Meas, 2019, 68(6): 2237-2245. doi: 10.1109/TIM.2018.2872448
    [22] YANG H, LU Y, HU P, et al. Measurement and control of the movable coil position of a joule balance with a system based on a laser heterodyne interferometer[J]. Meas Sci Technol, 2014, 25(6): 233-243.
    [23] JäGER G. Limits of precision measurements based on interferometers[C]. Proceedings of the Fourth International Symposium on Precision Mechanical Measurements, 2008.
    [24] MURALIKRISHNAN B, ZIEBART M, ROBSON S, et al. Recent developments in large-scale dimensional metrology[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2009, 223(6): 571-595. doi: 10.1243/09544054JEM1284
    [25] JAEGER G. Limitations of precision length measurements based on interferometers[J]. Measurement, 2010, 43(5): 652-658. doi: 10.1016/j.measurement.2009.12.030
    [26] MANSKE E, JäGER G, HAUSOTTE T, et al. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Meas Sci Technol, 2012, 23(7): 074001. doi: 10.1088/0957-0233/23/7/074001
    [27] 刁晓飞. 基于空间分离的高速外差激光干涉测量若干关键技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [28] GILLMER S R, SMITH R C G, WOODY S C, et al. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration[J]. Meas Sci Technol, 2014, 25(7): 075205. doi: 10.1088/0957-0233/25/7/075205
    [29] WANG YC, SHYU LH, TUNG PC, et al. Optimization of the optical parameters in Fabry-Perot interferometer [C]. Proceedings of the Engineering for a Changing World, 2017.
    [30] YOKOYAMA S, HORI Y, YOKOYAMA T, et al. A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error[J]. Precision Engineering, 2018, 54: 206-211. doi: 10.1016/j.precisioneng.2018.04.020
    [31] YOON S, PARK Y, CHO K. A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry[J]. Opt Express, 2013, 21(18): 020722. doi: 10.1364/OE.21.020722
    [32] 杨宏兴, 谭久彬, 胡鹏程, 等. 基于实时监测的激光外差干涉仪闲区误差自动补偿[J]. 光电子激光, 2008, 19(7): 934-937.
    [33] BAI Y, LIU Y, LU Y, et al. Stability improvement for coil position locking of joule balance[J]. Metrologia, 2017, 54(4): 461-467. doi: 10.1088/1681-7575/aa6eea
    [34] EDLéN B. The Refractive Index of Air[J]. Metrologia, 1966, 2(2): 71-80. doi: 10.1088/0026-1394/2/2/002
    [35] 钱璐帅, 李正坤, 白洋, 等. 面向能量天平同步测量的磁链差测量方法研究[J]. 计量学报, 2021, 42(9): 1121-1127. doi: 10.3969/j.issn.1000-1158.2021.09.01
    [36] YU X, ZHANG T, ELLIS J D. Absolute air refractive index measurement and tracking based on variable length vacuum cell[J]. Optical Engineering, 2016, 55(6): 064112. doi: 10.1117/1.OE.55.6.064112
  • 加载中
图(6)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  537
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-03-21

目录

    /

    返回文章
    返回