Cloud-Based Remote Calibration System for High Voltage DC Voltage Dividers
-
摘要: 传统的高压直流分压器校准方法是将仪器送到上级检定机构,或者检定人员到现场进行检定,时间成本巨大并且被检器在运输过程中有损伤的风险,而远程校准可以完美解决这些问题。基于QT开发控制端、现场端软件,通过套接字实现控制端、现场端软件与云平台的通信,再利用云平台转发消息实现控制端与现场端的通信。使用萤石云实现现场画面实时监控及语音通话,以此保证校准的合法性。验证结果表明,基于云平台的高压直流分压器远程校准系统可以实现远程校准的目的。Abstract: The article aims to realize the remote measurement calibration of the high voltage DC voltage divider. The traditional calibration method is to send the instrument to the higher-level verification organization or the verification personnel to the site for verification, which is time-consuming and has the risk of damage during transportation, while remote calibration can perfectly solve these problems. Based on QT, we developed the console and fieldside software, realized the communication between the software of both sides and the cloud platform through sockets, and then used the cloud platform to forward messages to realize the communication between the two sides. The Ezviz Cloud is applied to realize real-time monitoring of on-site images and voice calls to ensure the legality of calibration. The verification results show that the cloud-based remote calibration system of the high-voltage DC voltage divider can achieve the purpose of remote calibration.
-
Key words:
- remote calibration /
- high voltage DC voltage divider /
- QT /
- cloud service
-
表 1 高压直流分压器校准数据
Table 1. Calibration data of HVDC voltage divider
电压百分比 标准u0/V 标准U0/V 被检ux/V 被检变比 误差/% 10% −0.3371361 −5057.68 −0.50586965 9997.981330 −0.020 20% −0.6675179 −10014.00 −1.00159700 9998.056987 −0.019 50% −1.6667850 −25004.90 −2.50095900 9998.128380 −0.019 80% −2.6717384 −40081.10 −4.00885620 9998.138152 −0.019 100% −3.3335996 −50010.30 −5.00193490 9998.182987 −0.018 −10% −0.3359742 −5040.24 −0.50415867 9997.337409 −0.027 -
[1] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17, 24. [2] 龙兆芝, 李文婷, 刘少波, 等. 特高压冲击电压分压器线性度测量方法比较[J]. 电测与仪表, 2019, 56(15): 119-126. [3] 袁清云. 特高压直流输电技术现状及在我国的应用前景[J]. 电网技术, 2005(14): 1-3. doi: 10.3321/j.issn:1000-3673.2005.14.001 [4] 陈可, 张英敏, 李俊松. 直流电网网架结构对潮流分布的影响研究[J]. 电测与仪表, 2020, 57(19): 14-20, 26. [5] 唐登平, 郑欣, 李成竹, 等. 背靠背直流输电工程网络损耗监测系统研究与实现[J]. 电测与仪表, 2021, 58(3): 74-80. [6] 张鹏, 李超瀛, 杨新园, 等. 基于云服务的环境试验设备远程计量测试仪器的设计与开发[J]. 计测技术, 2019, 39(5): 70-75. [7] 潘浩达, 郑鹏, 郑梁, 等. 基于Qt和Web的工业远程控制系统[J]. 无线电通信技术, 2015, 41(6): 88-91, 96. doi: 10.3969/j.issn.1003-3114.2015.06.23 [8] 陈宝远, 褚庆文, 孙忠祥, 等. 一种基于OneNet设备云的智能硬件组网方法[J]. 哈尔滨理工大学学报, 2017, 22(5): 76-80. [9] 李扬, 耿昌宇, 张丽芬. 基于Socket通讯模式下的跨平台数据同步[J]. 北京理工大学学报, 2002(1): 81-84. doi: 10.3969/j.issn.1001-0645.2002.01.020 [10] 于涛, 王健. 基于Socket通讯技术的上层监控软件的实现[J]. 计算机技术与发展, 2009, 19(3): 243-245, 248. doi: 10.3969/j.issn.1673-629X.2009.03.064 [11] 宋俊慷, 黄秀梅, 杨秀增. EDP协议在物联网智慧农业监测中的应用[J]. 农业开发与装备, 2021(3): 56-58. doi: 10.3969/j.issn.1673-9205.2021.03.027 [12] 李梅, 罗雪芳, 马凌云, 等. 利用双数字电压表法对分压器分压比精确测量的探讨[J]. 工业计量, 2012(4): 47-48. doi: 10.3969/j.issn.1002-1183.2012.04.019 [13] 马宏忠, 胡虔生. 软件同步采样误差分析[J]. 电工技术学报, 1996, 11(2): 4347. [14] 石照民,张江涛,潘仙林,等.超低频电压量值溯源关键技术研究[J].计量科学与技术,2021,65(5):30-35. [15] 王凡, 潘克修, 陈万雨, 等. 基于NI VISA的仪器驱动设计[J]. 电子技术, 2007(2): 37-40. doi: 10.3969/j.issn.1000-0755.2007.02.009 [16] 贾正森,王磊,张江涛,等.交流约瑟夫森量子电压在电磁计量中的应用[J].计量科学与技术,2020(8):44-50, 60. [17] 贺青,邵海明,梁成斌.电磁计量学研究进展评述[J].计量学报,2021,42(11):1543-1552. [18] 高申翔,夏伟,顾卫红,等.电压驻波比测量不确定度的评定和表述[J].计量学报,2021,42(12):1567-1570.