Establishment of UV LED Measurement Standard
-
摘要: 针对紫外LED辐射度的计量需求,建立了紫外LED辐射度计量标准装置。利用该装置可对紫外LED、紫外标准灯等紫外辐射源的各辐射参数(包括光谱辐射照度、曝辐射量、光谱辐射通量、平均辐射强度等)进行测量,并进一步推导出峰值波长、中心波长、带宽、相对光谱分布、光子通量、光子通量密度、外量子效率、紫外危害等参数的值。紫外LED计量标准装置采用基准级光谱辐射计,以及自主设计研制的测量系统与控制系统。200~450 nm光谱辐射照度的合成标准不确定度为3.3%~0.6%;200~450 nm光谱辐射通量的合成标准不确定度为3.4%~0.8%。此计量标准装置的建立,填补了紫外光谱辐射通量这一计量参数的空白,大幅提升了紫外辐射照度的测量不确定度水平,为紫外固化、紫外消毒杀菌等应用领域提供可靠的计量溯源。Abstract: The UV LED measurement standard was established to satisfy the high demand for UV LED calibration. The measurement apparatus can measure the optical radiometry parameters (including spectral or broadband irradiance, radiant exposure, spectral or broadband radiant flux, average radiant intensity) of UV LED and UV standard lamps, and further derive the values of peak wavelength, center wavelength, bandwidth, relative spectral distribution, photon flux, photon flux density, external quantum efficiency, and ultraviolet hazards. The UV LED measurement standard adopts a spectroradiometer at primary standard level, as well as the self-designed measurement system and control system. The combined standard uncertainty for 200~450 nm spectral irradiance is 3.3%~0.6%, while the combined standard uncertainty for 200~450 nm spectral radiant flux is 3.4%~0.8%. The establishment of UV LED measurement standard fills the gap in UV spectral radiant flux, significantly improves the measurement uncertainty of UV irradiance, and provides accurate traceability for UV curing and UV disinfection.
-
Key words:
- UV LED /
- LED radiometry /
- UV irradiance /
- UV radiant intensity /
- UV radiant flux /
- UV curing /
- UV disinfection
-
表 1 光谱辐射照度测量不确定度
Table 1. Measurement uncertainty of spectral irradiance
波长/nm u/% 波长/nm u/% 200 3.3 330 0.8 210 2.7 340 0.7 220 2.3 350 0.7 230 2.0 360 0.7 240 1.6 370 0.7 250 1.2 380 0.7 260 1.0 390 0.7 270 1.0 400 0.6 280 1.0 410 0.6 290 0.9 420 0.6 300 0.8 430 0.6 310 0.8 440 0.6 320 0.8 450 0.6 表 2 光谱辐射通量测量不确定度
Table 2. Measurement uncertainty of spectral radiant flux
波长/nm u/% 波长/nm u/% 200 3.4 330 0.9 210 2.8 340 0.8 220 2.4 350 0.8 230 2.0 360 0.8 240 1.7 370 0.8 250 1.3 380 0.8 260 1.1 390 0.8 270 1.1 400 0.8 280 1.1 410 0.8 290 1.0 420 0.8 300 1.0 430 0.8 310 1.0 440 0.8 320 0.9 450 0.8 表 3 典型紫外LED测量结果
Table 3. Measurement results of typical UV LED
编号 S1 S2 S3 S4 S5 S6 电压(V) 12.27 6.43 4.97 3.70 3.41 3.43 电流(mA) 100 100 60 350 350 350 峰值波长(nm) 266.7 278.7 306.2 369.6 384.1 401.9 带宽(nm) 11.7 12.9 14.2 8.9 10.7 14.8 辐射照度(W·m−2) 3.02E-1 1.14 1.37E-1 63.2 68.0 65.9 平均辐射强度(W·sr−1) 3.02E-3 1.14E-2 1.37E-3 6.32E-1 6.80E-1 6.59E-1 光子通量密度(s−1·m−2) 4.07E17 1.61E18 2.14E17 1.18E20 1.31E20 1.33E20 辐射通量(mW) 11.44 9.90 6.38 539.8 586.9 568.8 光子通量 (s−1) 1.54E16 1.39E16 9.96E15 1.01E18 1.14E18 1.15E18 外量子效率 2.5% 2.2% 2.7% 46.1% 52.0% 52.8% -
[1] 代彩红, 王彦飞, 吴志峰, 等. 紫外辐射消毒中UVC 辐射照度的测量与溯源[J]. 照明工程学报, 2020, 31(2): 1-5. [2] Manuela Buonanno, David Welch, Igor Shuryak, et al. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses[J]. Scientific Reports, 2020, 10: 10285. doi: 10.1038/s41598-020-67211-2 [3] 国家市场监督管理总局. 对十三届全国人大三次会议第5704号建议的答复[OL]. http://gkml.samr.gov.cn/nsjg/bzjss/202010/t20201030_322758.html, 2020–10–30/2021–10–25. [4] Sperling A, Bergen T, Blattner P, et al. Characterization and Calibration Methods of UV Radiometers[M]. Vienna: CIE, 2016: 1-2. [5] Yoshihiko Muramoto, Masahiro Kimura, Suguru Nouda. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp[J]. Semiconductor Science and Technology, 2014, 29: 084004. doi: 10.1088/0268-1242/29/8/084004 [6] Meelis-Mait Sildoja, Saulius Nevas, Natalia Kouremeti, et al. LED-based UV source for monitoring spectroradiometer properties[J]. Metrologia, 2018, 55: S97-S103. doi: 10.1088/1681-7575/aab639 [7] G P Eppeldauer, C C Cooksey, H W Yoon, et al. Broadband radiometric LED measurements[C]. Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems. San Diego. CA: SPIE, 2016: 99540J. [8] Kenichi Kinoshita, Kenji Godo. UV-A Irradiance Measurement of a UV-LED under near-field conditions [C]. 13th International Conference on New Developments and Applications in Optical Radiometry. Tokyo: NEWRAD, 2017: 196-197. [9] 崔磊, 刘佳畅, 贾亚青, 等. 小型光通量计校准方法研究[J]. 计量科学与技术, 2022, 66(1): 19-21,31. doi: 10.12338/j.issn.2096-9015.2021.0510 [10] 侯启真, 马秉正. 基于误差反馈的LED阵列近场光强检测[J]. 计量学报, 2021, 42(8): 993-999. doi: 10.3969/j.issn.1000-1158.2021.08.03 [11] 刘玉龙, 黎俊, 江铖, 等. 高稳定性LED背光液晶白场仪的研究[J]. 计量科学与技术, 2021, 65(11): 24-28. doi: 10.12338/j.issn.2096-9015.2021.0008 [12] 代彩红, 于家琳, 于靖, 等. 紫外辐射度的量值溯源与国际比对[J]. 计量学报, 2009, 30(6A): 104-108. [13] 王彦飞, 代彩红, 吴志峰, 等. 光谱仪测量窄带宽光源光谱分布的七点修正法[J]. 光谱学与光谱分析, 2016, 36(6): 1921-1924. [14] Yanfei Wang, Caihong Dai, Zhifeng Wu, et al. Intersection Point Method for Measuring Spectral Irradiance of High-Power UV-LED with a Spectroradiometer [C]. 13th International Conference on New Developments and Applications in Optical Radiometry. Tokyo: NEWRAD, 2017: 104-105. [15] Goodman T, Heidel G, Muray K, et al. Measurement of LEDS[M]. Vienna: CIE, 2007: 14-15. [16] Caihong Dai, Yanfei Wang, Ling Li, et al. Spectral irradiance scale realization and uncertainty analysis based on a 14 mm diameter WC–C fixed point blackbody from 250 nm to 2500 nm[J]. Metrologia, 2022, 59: 024001. doi: 10.1088/1681-7575/ac4a40 [17] Yanfei Wang, Caihong Dai, Boris Khlevnoy, et al. A method for spectral irradiance measurement based on a large area WC-C fixed point blackbody[J]. Optics Express, 2020, 28(19): 28430-28440. doi: 10.1364/OE.401626 [18] Caihong Dai, Boris Khlevnoy, Zhifeng Wu, et al. Bilateral Comparison of Spectral Irradiance Between NIM and VNIIOFI from 250 to 2500 nm[J]. MAPAN-Journal of Metrology Society of India, 2017, 32(3): 243-250. [19] Caihong Dai, Zhifeng Wu, Yanfei Wang, et al. Spectral irradiance primary scale realization and characterization of deuterium lamps from 200 to 400 nm[J]. Applied Optics, 2020, 59(27): 8494-8504. doi: 10.1364/AO.400670 [20] 代彩红, 王彦飞, 吴志峰, 等. 光谱辐射亮度国际比对与结果分析[J]. 计量学报, 2020, 41(2): 147-152. doi: 10.3969/j.issn.1000-1158.2020.02.04 [21] J Krochmann, H Reiter, F Rotter, et al. The Measurement of Luminous Flux[M]. Vienna: CIE, 1989: 22-27.