留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光干涉技术在水声测量中的应用与发展

王敏 杨平 何龙标 邢广振 冯秀娟 王珂

王敏,杨平,何龙标,等. 激光干涉技术在水声测量中的应用与发展[J]. 计量科学与技术,2022, 66(4): 2-12 doi: 10.12338/j.issn.2096-9015.2021.0625
引用本文: 王敏,杨平,何龙标,等. 激光干涉技术在水声测量中的应用与发展[J]. 计量科学与技术,2022, 66(4): 2-12 doi: 10.12338/j.issn.2096-9015.2021.0625
WANG Min, YANG Ping, HE Longbiao, XING Guangzhen, FENG Xiujuan, WANG Ke. Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique[J]. Metrology Science and Technology, 2022, 66(4): 2-12. doi: 10.12338/j.issn.2096-9015.2021.0625
Citation: WANG Min, YANG Ping, HE Longbiao, XING Guangzhen, FENG Xiujuan, WANG Ke. Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique[J]. Metrology Science and Technology, 2022, 66(4): 2-12. doi: 10.12338/j.issn.2096-9015.2021.0625

激光干涉技术在水声测量中的应用与发展

doi: 10.12338/j.issn.2096-9015.2021.0625
基金项目: 国家自然科学基金项目(51805506、 11904347)。
详细信息
    作者简介:

    王敏(1987-),中国计量科学研究院副研究员,研究方向:水声计量测试、声学信号处理等,邮箱:wangmin@nim.ac.cn

    通讯作者:

    杨平(1976-),中国计量科学研究院研究员,研究方向:超声、水声计量,邮箱:yangp@nim.ac.cn

Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique

  • 摘要: 激光干涉技术为水声测量提供了一种不同于传统水听器的新途径。对激光干涉技术在水声测量中的应用与发展进行了概述,从水听器灵敏度校准、声场分布测量、换能器表面振速测量三个方面,总结分析了国内外的研究进展及当前的技术水平。对上述三种技术的测量原理进行了介绍,并给出一些具有代表性的测量结果,分析了各技术的制约因素和有待解决的关键问题,对未来的研究发展方向进行了预测,虽然目前激光干涉测量还无法完全替代传统的水声测量方式,但经过持续研究与发展,有望更好地发挥激光干涉技术的优势,提高水声测量水平。
  • 图  1  激光外差干涉法水声声压复现系统框图[11]

    Figure  1.  Arrangement of underwater acoutsic measurement using a laser heterodyne interferometric system[11]

    图  2  水听器与激光干涉系统记录的300 kHz信号波形对比

    Figure  2.  Comparison of for 300 kHz waveforms recorded by a reference hydrophone and a laser interferometric system

    图  3  激光干涉法与互易法水听器校准的结果对比[11]

    Figure  3.  Results of hydrophones calibration results from laser heterodyne interferometric method and reciprocity method[11]

    图  4  激光干涉法声场扫描原理示意图

    Figure  4.  Scheme of measuring underwater acoustic field by laser heterodyne interferometer

    图  5  声场分布与线性扫描的关系示意图[38]

    Figure  5.  Relationship of the acoustic field and the parallel beam scan[38]

    图  6  圆形平面换能器的声场分布扫描结果[36]

    Figure  6.  Comparison results of the acoustic field produced by a circular planar transducer measured by laser heterodyne interferometer and hydrophone[36]

    图  7  换能器阵列的声场分布扫描结果[15]

    Figure  7.  Comparison results of the acoustic field produced by a transducer array measured by laser heterodyne interferometer and hydrophone[15]

    图  8  换能器表面振动分布扫描示意图

    Figure  8.  Scheme of measuring surface vibration of a transducer using a scanning laser heterodyne interferometer

    图  9  激光扫描推算与水听器扫描的声压分布对比图[43]

    Figure  9.  Comparison results of the normalized pressure distributions measured by laser heterodyne interferometer and hydrophone[43]

  • [1] 郑士杰, 袁文俊, 缪荣兴, 等. 水声计量测试技术[M]. 第二版. 哈尔滨: 哈尔滨工程大学出版社, 2016: 1-9.
    [2] International Electrotechnical Commission. Underwater acoustics - Hydrophones - Calibration of hydrophones - Part 1: Procedures for free-field calibration of hydrophones: IEC 60565-1: 2020[S]. Geneva, 2020.
    [3] KOUKOULAS T, ROBINSON S, RAJAGOPAL S, et al. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water[J]. Metrologia, 2016, 80(11): 891-898.
    [4] BACON R. Primary calibration of ultrasonic hydrophone using optical interferometry[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1988, 35(2): 152-161. doi: 10.1109/58.4165
    [5] KOCH C, MOLKENSTRUCK W. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1999, 46(5): 1303-1314. doi: 10.1109/58.796135
    [6] YANG P, XING G, HE L. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer[J]. Ultrasonics, 2014, 54(1): 402-407. doi: 10.1016/j.ultras.2013.07.013
    [7] THEOBALD P, ROBINSON S, THOMPSON A, et al. Technique for the calibration of hydrophones in the frequency range 10 to 600 kHz using a heterodyne interferometer and an acoustically compliant membrane[J]. J. Acoust. Soc. Am., 2005, 118(5): 3110-3116. doi: 10.1121/1.2063068
    [8] KOUKOULAS T, THEOBALD P, ROBINSON S, et al. Absolute calibration of hydrophones using heterodyne interferometry and zero-crossing signal demodulation[C]. In Proceedings of Underwater Acoustic Measurements: Technologies and Results. Kos, Greece, 2011: 1205-1210.
    [9] KOUKOULAS T, THEOBALD P, ROBINSON S, et al. Particle velocity measurements using heterodyne interferometry and Doppler shift demodulation for absolute calibration of hydrophones[C]. In Proc. ECUA. Edinburgh, Scotland: Acoustical Society of America, 2012: 070022.
    [10] WANG M, KOUKOULAS T, XING G, et al. Measurement of underwater acoustic pressure in the frequency range 100 to 500 kHz using optical interferometry and discussion on associated uncertainties[C]. In Proc. ICSV25. Hiroshima, Japan: International Institute of Acoustics and Vibration, 2018: 4909-4914.
    [11] 王敏, 杨平, 何龙标, 等. 10 ~ 500 kHz水听器的激光外差干涉法原级校准[J]. 声学学报, 2021, 46(4): 614-622.
    [12] 王月兵, 黄勇军. 使用激光测振技术校准水听器灵敏度[J]. 声学学报, 2001, 26(1): 29-33. doi: 10.3321/j.issn:0371-0025.2001.01.006
    [13] 王世全. 100 kHz ~ 1 MHz频率范围水听器灵敏度激光法校准及其验证[J]. 宇航计测技术, 2019, 39(3): 58-62. doi: 10.12060/j.issn.1000-7202.2019.03.11
    [14] 王世全, 黄勇军, 陈毅. 1 ~ 200 kHz水听器灵敏度光学方法校准[C]. 中国西部声学学术交流会. 雅安: 声学技术, 2015: 81-84.
    [15] ROBINSON S, THEOBALD P, HAYMAN G, et al. The use of optical techniques to map the acoustic field produced by high frequency sonar transducers[C]. In Proceedings of the Institute of Acoustics. Institute of Acoustics, 2006: 726-734.
    [16] HUMPHREY V, ROBINSON S, THEOBALD P, et al. A comparison of hydrophone near‐field scans and optical techniques for characterising high frequency sonar transducers[J]. J. Acoust. Soc. Am., 2008, 123: 3436.
    [17] 王月兵, 平自红, 黄勇军. 激光测振技术在水声测量中的应用[C]. 全国船舶仪器仪表学术会议, 成都: 中国仪器仪表学会, 中国造船工程学会. 2001: 157-160.
    [18] THEOBALD P, ROBINSON S, THOMPSON A, et al. Fundamental standards for acoustics based on optical methods - Phase two report for sound in water[R]. London, United kingdom: National Physical Laboratory, 2003.
    [19] THEOBALD P, THOMPSON A, ROBINSON S, et al. Fundamental standards for acoustics based on optical methods - Phase three report for sound in water[R]. London, United kingdom: National Physical Laboratory, 2004.
    [20] International Organization for Standardization. Methods for the calibration of vibration and shock transducers - Part 41: Calibration of laser vibrometers: ISO 16063-41: 2011[S]. Switzerland, 2011.
    [21] KOUKOULAS T, PIPER B, ROBINSON S, et al. Uncertainty contributions in the optical measurement of free-field propagating sound waves in air and water[C]. In Proc. ICSV23. Athens, Greece: International Institute of Acoustics and Vibration, 2016: 1-8.
    [22] 王敏, 杨平, 何龙标, 等. 光学法复现水声声压中的过零点解调系统设计[J]. 计量学报, 2019, 40(2): 315-318.
    [23] WILLIAMS E, DARDY H, FINK R. Nearfield acoustical holography using an underwater, automated scanner[J]. J. Acoust. Soc. Am., 1985, 78(2): 789-798. doi: 10.1121/1.392449
    [24] MAYNARD J, WILLIAMS E, LEE Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH[J]. J. Acoust. Soc. Am., 1985, 78(4): 1395-1413. doi: 10.1121/1.392911
    [25] REIBOLD R, MOLKENSTRUCK W. Light diffraction tomography applied to the investigation of ultrasonic fields. I. Continuous waves[J]. Acta Acustica united with Acustica, 1984, 56(3): 180-192.
    [26] PITTS T, GREENLEAF J. Three-dimensional optical measurement of instantaneous pressure[J]. J. Acoust. Soc. Am., 2000, 108(6): 2873-2883. doi: 10.1121/1.1318899
    [27] REMENIERAS J, MATAR O, CALLE S, et al. Acoustic pressure measurement by acousto-optic tomography[C]. IEEE Ultrasonics Symposium. Atlanta, USA: Institute of Electrical and Electronics Engineers Inc. , 2001: 505-508.
    [28] BAHR L, LERCH R. Beam profile measurements using light refractive tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(2): 405-413. doi: 10.1109/TUFFC.2008.658
    [29] 王月兵, 王世全. 激光反射全息技术在超声换能器近场测量中的应用[J]. 声学学报, 2012, 37(1): 68-73.
    [30] HARLAND A, PETZING J, TYRER J. Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry[J]. Journal of sound and vibration, 2002, 252(1): 169-177. doi: 10.1006/jsvi.2001.3926
    [31] HARLAND A, PETZING J, TYRER J, et al. Application and assessment of laser Doppler velocimetry for underwater acoustic measurements[J]. Journal of sound and vibration, 2003, 265(3): 627-645. doi: 10.1016/S0022-460X(02)01460-8
    [32] HARLAND A, PETZING J, TYRER J. Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer[J]. J. Acoust. Soc. Am., 2004, 115(1): 187-195. doi: 10.1121/1.1635841
    [33] HARLAND A, PETZING J, TYRER J. Visualising scattering underwater acoustic fields using laser Doppler vibrometry[J]. Journal of sound and vibration, 2007, 305(4-5): 659-671. doi: 10.1016/j.jsv.2007.04.026
    [34] THEOBALD P, ROBINSON S, HAYMAN G, et al. Acousto-optic tomography for mapping of high-frequency sonar fields[C]. In Proceedings of Acoustics. Paris, France, 2008: 2833-2838.
    [35] 王浩宇, 冯秀娟, 祝海江, 等. 二维声场的光学扫描方法[J]. 计量学报, 2018, 39(3): 381-385. doi: 10.3969/j.issn.1000-1158.2018.03.19
    [36] WANG M, YANG P, HE L, et al. Measurement and reconstruction of underwater acoustic distribution using optical and tomographic techniques[C]. In: Proc. ICSV26. Montreal, Canada: International Institute of Acoustics and Vibration, 2019: 1-7.
    [37] CHINNERY P, HUMPHREY V, BECKETT C. The schlieren image of two-dimensional ultrasonic fields and cavity resonances[J]. J. Acoust. Soc. Am., 1997, 101(1): 250-256. doi: 10.1121/1.417976
    [38] TORRAS-ROSE A, BARRERE-FIGUEROA S, JACOBSEN F. Sound field reconstruction using acousto-optic tomography[J]. J. Acoust. Soc. Am., 2012, 131(5): 3786-3793. doi: 10.1121/1.3695394
    [39] CATHIGNOL D, SAPOZHNIKOV O. On the application of the Rayleigh integral to the calculation of the field of a concave focusing radiator[J]. Acoustical Physics, 1999, 45(6): 735-742.
    [40] SCHAFER M, LEWIN P. Transducer characterization using the angular spectrum method[J]. J. Acoust. Soc. Am., 1989, 85: 2202-2214. doi: 10.1121/1.397869
    [41] SAPOZHNIKOV V, MOROZOV A, CATHIGNOL D. Piezoelectric transducer surface vibration characterization using acoustic holography and laser vibrometry[C]. IEEE Ultrasonics Symposium. Montreal, Canada: Institute of Electrical and Electronics Engineers Inc. , 2004: 161-164.
    [42] HUMPHREY V, ROBINSON S, THEOBALD P, et al. Comparison of optical and hydrophone-based near-field techniques for full characterisation of high frequency sonar [C]. Proceedings of Underwater Acoustic Measurements. Heraklion, Greece, 2005: 457-464.
    [43] COOLING M, HUMPHREY V, THEOBALD P, et al. Underwater ultrasonic field characterisation using laser Doppler vibrometry of transducer motion[C]. ICA20. Sydney, Australia: International Congress on Acoustics, 2010: 1-6.
    [44] HUMPHREY V, COOLING M, THEOBALD P, et al. The influence of the acousto-optic effect on LDV measurements of underwater transducer vibration and resultant field predictions[C]. Annual Spring Conference, Acoustics 2013. Nottingham, United kingdom: Institute of Acoustics, 2013: 192-198.
    [45] HUMPHREY V. Optical studies of acoustic fields [C]. International Conference on Underwater Acoustics. Montreal, Canada: Acoustical Society of America, 2020: 1-12.
    [46] WANG Y, TYRER J, PING Z, et al. Measurement of focused ultrasonic fields using a scanning laser vibrometer[J]. J. Acoust. Soc. Am., 2007, 121(5): 2621-2627. doi: 10.1121/1.2713708
    [47] FOOTE K, THEOBALD P. Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation[J]. J. Acoust. Soc. Am., 2015, 138(3): 1627-1636. doi: 10.1121/1.4929372
    [48] HU L, ZHAO N, GAO Z, et al. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface[J]. Measurement Science and Technology, 2018, 29(5): 55001. doi: 10.1088/1361-6501/aaaafb
    [49] WILLIAMS E. Fourier acoustics: sound radiation and nearfield acoustical holography[M]. London, United kingdom: Academic press, 1999.
  • 加载中
图(9)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  556
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-31
  • 网络出版日期:  2022-04-13

目录

    /

    返回文章
    返回