Overview of the Research Progress of Reference Dosimetry in Proton Radiotherapy
-
摘要: 质子放射治疗因质子在深度剂量上具有布拉格峰特性而逐渐成为一种精准放疗技术。本文介绍了三种质子束参考剂量测量方法,总结了其局限性,并借助蒙特卡洛模拟方法对测量方法的修正项及改进方法进行了讨论,最后概述了微剂量测量的最新进展,为国内研究质子束水吸收剂量测量工作提供了参考。Abstract: Proton radiotherapy has gradually become a precision radiotherapy technique owing to the characteristic of Bragg Peak on the depth-dose distribution. This paper introduces the details of three proton beam reference dosimetry methods as well as the corresponding limitations in clinical proton modalities. Further discussions on the correction terms and improvement methods of measurements combined with Monte Carlo techniques have been proposed. Finally, the state-of-the-art determination on microdosimetry of proton beams has been summarized, which provides a reference for research on proton beam water absorption dose measurement.
-
Key words:
- proton radiotherapy /
- reference dosimetry /
- calorimetry /
- ionization chamber /
- microdosimetry
-
表 1 质子水量热实验及修正因子汇总
Table 1. Summary of proton water calorimeters and correction factors
文献 年份 METAS 2005[13] PTB 2006[22] METAS 2010[23] 隆德大学2006[17]/2010[14] 麦吉尔大学2010[12]/2016[12, 24] 格罗宁根大学2018[19] 射线质 214 MeV1 32 MeV1/182 MeV2 250 MeV1 175 MeV1/180 MeV1 235 MeV1,2/60 MeV2 190 MeV2 质子束来源 瑞士PSI 德国HMI/南非iThemba 瑞士PSI 瑞典TSL 美国MGH/英国 CCC 德国AGOR 水等校测量深度 - 20 mm/- 16.8 cm3 10 cm/6 cm 131.15 mm/11 mm 5 cm 量热芯
(形状/材质/壁厚)圆柱/玻璃/- 平板/镀金铝/0.3 mm 圆柱/玻璃/1 mm 圆柱/玻璃/1 mm 平板/玻璃/1.12 mm 圆柱&平板/
玻璃/1 mm超纯水系统 N2饱和 - N2饱和 N2饱和 H2饱和 H2饱和 kHD 0 ± 0.3% 0.4%/(0.3% ± 0.3%) 0 0.09% 0 0 合成不确定度 - 1.5%/1.4% 5% 0.5% 0.4%/0.6% 0.12% 注:1代表扫描束; 2代表散射束;3代表实际测量深度。 表 2 蒙特卡洛方法计算质子束辐射质转换因子研究
Table 2. Monte Carlo calculated kQ factors of proton beams
文献 蒙特卡洛软件 电离室型号(数量) 质子束1(参考深度2) Gomà, et al[46] PENH Exradin A10, A11, A11TW+, NACP-02, PPC-05, PPC-40,
Advanced Markus 34045, Markus 23343, Roos34001,
FC65-G, FC65-P, NE2571(12个)70, 100, 150, 00,
250 MeV (2g·cm-2)Sorriaux, et al[45] Geant4/GATE/TOPAS Roos, FC65-G(2个) SOBP (300mm) Lourenço, et al [44] FLUKA Roos34001, PTW34070, PTW34073(3个) 60, 150, 250MeV (1~2cm) Wulff, et al[43] Geant4/TOPAS NACP02, NE2571(2个) 70, 100, 150, 200,
250 MeV (2g·cm-2)Gomà, et al[41] PENH Exradin A10, A11, A11TW+, NACP-02, PPC-05, PPC-40,
Advanced Markus 34045, Markus 23343, Roos 34001, FC65-G,
FC65-P, NE2571, PTW30013,Exradin A12, A19(15个)60, 70, 80, 100, 150,
160, 200, 250MeV;
SOBP(1~10g·cm-2)Bauman, et al[47] FLUKA/PENH/TOPAS/GEANT4 NACP02, Roos34001, Exradin A12, NE2571(4个3) 150MeV (2g·cm-2) Bauman, et al[42] TOPAS/ GEANT4 Roos, Markus, Advanced Markus, NACP02, PPC-05,
PPC-40, NE 2571, 30013, FC65-G, Exradin A1SL(10个)60, 70, 80, 100, 150, 160,
200, 250MeV (1~2g·cm-2)Kretschmer, et al[48] GATE/ GEANT4 NE2571, PTW30013, PTW31014, PTW31021, PTW31022(5个) 70, 100, 150, 200,
and 250 MeV (2cm)注:1表示无特殊标识均为单能质子束; 2表示TRS-398报告中质子束电离室测量的参考深度为3g·cm−2;3表示简单几何建模。 -
[1] PAGANETTI H, KOOY H. Proton radiation in the management of localized cancer[J]. Expert Rev Med Devices, 2010, 7(2): 275-285. doi: 10.1586/erd.10.2 [2] PTCOG.粒子放疗设置统计[EB/OL].[2021-10-20]. https://www.ptcog.ch/index.php/facilities-underconstruction. [3] INTERNATIONAL ATOMIC ENERGY AGENCY. Absorbed Dose Determination in External Beam Radiotherapy[M]. Vienna: IAEA, 2001. [4] DICELLO J, UNIVERSITY C, FESSENDEN P, et al. Protocol for heavy charged-particle therapy beam dosimetry: 16[R]. AAPM Report, 1986. [5] VYNCKIER S, BONNETT D E, JONES D. Code of practice for clinical proton dosimetry[J]. Radiotherapy & Oncology Journal of the European Society for Therapeutic Radiology & Oncology, 1991, 20 (1): 53-63. [6] VYNCKIER S, BONNETT D E, JONES D. Supplement to the code of practice for clinical proton dosimetry[J]. Radiotherapy & Oncology Journal of the European Society for Therapeutic Radiology & Oncology, 1994, 32(2): 174-179. [7] KACPEREK A. Clinical Proton Dosimetry Part I: Beam Production, Beam Delivery and Measurement of Absorbed Dose (ICRU Report 59)[J]. Physics in Medicine & Biology, 2000, 45 (10): 3123. [8] MUSOLINO S V. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; Technical Reports Series No. 398[J]. Health Physics, 2001, 81 (5): 592-593. [9] JR D L, WAMBERSIE A, WHITMORE G. ICRU Report 78, Precribing, recording, and reporting proton-beam therapy[J]. Journal of the ICRU, 2007, 7 (2): 1-210. [10] 王坤, 金孙均, 王志鹏, 等. 医用加速器光子水吸收剂量量值体系的研究与应用[J]. 中国计量, 2019(7): 77-80. [11] KARGER C P, JAKEL O, PALMANS H, et al. Dosimetry for ion beam radiotherapy[J]. Phys Med Biol, 2010, 55(21): 193-234. doi: 10.1088/0031-9155/55/21/R01 [12] SARFEHNIA A, CLASIE B, CHUNG E, et al. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery[J]. Med Phys, 2010, 37(7): 3541-50. [13] SASSOWSKY M, PEDRONI E. On the feasibility of water calorimetry with scanned proton radiation[J]. Phys Med Biol, 2005, 50(22): 5381-5400. doi: 10.1088/0031-9155/50/22/011 [14] MEDIN J. Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber[J]. Phys Med Biol, 2010, 55(12): 3287-3298. doi: 10.1088/0031-9155/55/12/002 [15] LOURENçO A, THOMAS R, BOUCHARD H, et al. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams[J]. Med Phys, 2016, 43(7): 4122. doi: 10.1118/1.4951733 [16] ROSSOMME S, PALMANS H, THOMAS R, et al. Reference dosimetry for light-ion beams based on graphite calorimetry[J]. Radiat Prot Dosimetry, 2014, 161(1-4): 92-95. doi: 10.1093/rpd/nct299 [17] MEDIN J, ROSS C K, KLASSEN N V, et al. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam[J]. Phys Med Biol, 2006, 51(6): 1503-1521. doi: 10.1088/0031-9155/51/6/010 [18] ROSS C K, KLASSEN N V. REVIEW ARTICLE: Water calorimetry for radiation dosimetry[J]. Physics in Medicine & Biology, 1996, 41(1): 1-29. [19] MULDER J. Water calorimetry for proton Implementing a primary dose measurement standard[D]. Groningen: University of Groningen, 2017. [20] SHIN W G, RAMOS-MENDEZ J, TRAN N H, et al. Geant4-DNA simulation of the pre-chemical stage of water radiolysis and its impact on initial radiochemical yields[J]. Physica Medica, 2021, 88(77): 86-90. [21] GRASSBERGER C, PAGANETTI H. Elevated LET components in clinical proton beams[J]. Phys Med Biol, 2011, 56(20): 6677-6691. doi: 10.1088/0031-9155/56/20/011 [22] BREDE H J, GREIFf K D, HECKER O, et al. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields[J]. Physics in Medicine & Biology, 2006, 51(15): 3667-3682. [23] GAGNEBIN S, TWERENBOLD D, PEDRONI E, et al. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(5): 524-528. doi: 10.1016/j.nimb.2009.11.010 [24] RENAUD J, ROSSOMME S, SARFEHNIA A, et al. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams[J]. Phys Med Biol, 2016, 61(18): 6602-6619. doi: 10.1088/0031-9155/61/18/6602 [25] JAFFE G. Zur theory der ionization in kolonnen I[J]. Ann Physik, 2006, 341(12): 303-344. [26] ROSSOMME S, HOPFGARTNER J, LEE N D. Ion recombination correction in carbon ion beams[J]. Med Phys, 2016, 43(7): 4198. doi: 10.1118/1.4953637 [27] BOAG J W, HOCHHUSER E, BALK O A. The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation[J]. Phys Med Biol, 1996, 41(5): 885-897. doi: 10.1088/0031-9155/41/5/005 [28] ROSSOMME S, LORENTINI S, VYNCKIER S, et al. Correction of the measured current of a small-gap plane-parallel ionization chamber in proton beams in the presence of charge multiplication[J]. Zeitschrift für Medizinische Physik, 2021, 31(2): 192-202. [29] BHULLAR A S, WATCHMAN C J. The effective depth of cylindrical ionization chambers in water for clinical proton beams[J]. Phys Med Biol, 2012, 57(1): 273-286. doi: 10.1088/0031-9155/57/1/273 [30] PALMANS H. Perturbation factors for cylindrical ionization chambers in proton beams. Part I: corrections for gradients[J]. Phys Med Biol, 2006, 51(14): 3483-3501. doi: 10.1088/0031-9155/51/14/014 [31] HARTMANN G H, JÄKEL O, HEEG P, et al. Determination of water absorbed dose in a carbon ion beam using thimble ionization chambers[J]. Phys Med Biol, 1999, 44(5): 1193-1206. doi: 10.1088/0031-9155/44/5/008 [32] JÄKEL, HARTMANN, HEEG, et al. Effective point of measurement of cylindrical ionization chambers for heavy charged particles[J]. Phys Med Biol, 2000, 45(3): 599-607. doi: 10.1088/0031-9155/45/3/303 [33] SUGAMA Y, NISHIO T, ONISHI H. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam[J]. Med Phys, 2015, 42(7): 3892-3895. doi: 10.1118/1.4921617 [34] BARNA S, RESCH A, PUCHALSKA M, et al. Determination of the effective point of measurement of a ionization chamber in light-ion beams [J]. Radio Oncol, 2021,161:S230-S231. [35] PALMANS H, MEDIN J, TRNKOVA P, et al. Gradient corrections for reference dosimetry using Farmer-type ionization chambers in single-layer scanned proton fields[J]. Med Phys, 2020, 47(12): 6531-6539. doi: 10.1002/mp.14554 [36] GREVILLOT L, OSORIO M J, LETELLIER V, et al. Clinical implementation and commissioning of the MedAustron Particle Therapy Accelerator for non-isocentric scanned proton beam treatments[J]. Med Phys, 2020, 47(2): 380-392. doi: 10.1002/mp.13928 [37] GOMA C, SAFAI S, VOROS S. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept[J]. Phys Med Biol, 2017, 62(12): 4991-5005. doi: 10.1088/1361-6560/aa7008 [38] KUESS P, HAUPT S, OSORIO J, et al. Characterization of the PTW-34089 type 147 mm diameter large-area ionization chamber for use in light-ion beams[J]. Phys Med Biol, 2020, 65(17): 17NT02. doi: 10.1088/1361-6560/ab9852 [39] FARR J B, MOSKVIN V, LUKOSE R C, et al. Technical Note: Design and characterization of a large diameter parallel plate ionization chamber for accurate integral depth dose measurements with proton beams[J]. Med Phys, 2020, 47(7): 3214-3224. doi: 10.1002/mp.14166 [40] GOMA C, HOFSTETTER-BOILLAT B, SAFAI S, et al. Experimental validation of beam quality correction factors for proton beams[J]. Phys Med Biol, 2015, 60(8): 3207-3216. doi: 10.1088/0031-9155/60/8/3207 [41] GOMA C, STERPIN E. Monte Carlo calculation of beam quality correction factors in proton beams using PENH[J]. Phys Med Biol, 2019, 64(18): 185009. doi: 10.1088/1361-6560/ab3b94 [42] BAUMANN K S, KAUPA S, BACH C, et al. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4[J]. Phys Med Biol, 2020, 65(5): 055015. doi: 10.1088/1361-6560/ab6e53 [43] WULFF J, BAUMANN K S, VERBEEK N, et al. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams[J]. Phys Med Biol, 2018, 63(11): 115013. doi: 10.1088/1361-6560/aac30e [44] LOURENçO A, BOUCHARD H, GALE R S, et al. The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: FLUKA simulations supported by a Fano test[J]. Medical Physics, 2018, 46(2): 885-891. [45] SORRIAUX J, TESTA M, PAGANETTI H, et al. Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy[J]. Medical physics, 2017, 44(9): 4919-4927. doi: 10.1002/mp.12434 [46] GOMA C, ANDREO P, SEMPAU J. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers[J]. Phys Med Biol, 2016, 61(6): 2389-2406. doi: 10.1088/0031-9155/61/6/2389 [47] BAUMANN K S, HORST F, ZINK K, et al. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams[J]. Med Phys, 2019, 46(10): 4639-4653. doi: 10.1002/mp.13737 [48] KRETSCHMER J, DULKYS A, BRODBEK L, et al. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams[J]. Med Phys, 2020, 47(11): 5890-5905. doi: 10.1002/mp.14499 [49] LORIN S, GRUSELL E, TILLY N, et al. Reference dosimetry in a scanned pulsed proton beam using ionisation chambers and a Faraday cup[J]. Phys Med Biol, 2008, 53(13): 3519-3529. doi: 10.1088/0031-9155/53/13/008 [50] PEDRONI E, SCHEIB S, BOHRINGER T, et al. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams[J]. Phys Med Biol, 2005, 50(3): 541-561. doi: 10.1088/0031-9155/50/3/011 [51] BORTOT D, POLA A, AGOSTEO S, et al. A novel avalanche-confinement TEPC for microdosimetry at nanometric level[J]. Radiation Measurements, 2017, 103: 1-12. doi: 10.1016/j.radmeas.2017.06.012 [52] TSUDA S, SATO T, TAKAHASHI F, et al. Measurement of microdosimetric spectra with a wall-less tissue-equivalent proportional counter for a 290 MeV/u 12C beam[J]. Physics in Medicine & Biology, 2010, 55(17): 5089-5101. [53] CONTE V, AGOSTEO S, BIANCHI A, et al. Microdosimetry of a therapeutic proton beam with a mini-TEPC and a MicroPlus-Bridge detector for RBE assessment[J]. Phys Med Biol, 2020, 65(24): 245018. doi: 10.1088/1361-6560/abc368 [54] SCHREWE U J, NEWHAUSER W D, BREDE H J, et al. Experimental kerma coefficients and dose distributions of C, N, O, Mg, Al, Si, Fe, Zr, A-150 plastic, Al2O3, AlN, SiO2 and ZrO2 for neutron energies up to 66 MeV[J]. Phys Med Biol, 2000, 45(3): 651-683. doi: 10.1088/0031-9155/45/3/307 [55] TRAN L T, CHARTIER L, PROKOPOVICH D A, et al. 3D-Mesa “Bridge” Silicon Microdosimeter: Charge Collection Study and Application to RBE Studies in C-12 Radiation Therapy[J]. IEEE Transactions on Nuclear Science, 2015, 62(2): 504-511. doi: 10.1109/TNS.2015.2391102 [56] MALMER, CYNTHIA J. ICRU Report 63. Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection[J]. Med Phys, 2001, 28 (5): 861. [57] SAWAKUCHI G O, FERREIRA F A, MCFADDEN C H, et al. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors[J]. Med Phys, 2016, 43(5): 2485. doi: 10.1118/1.4947128 [58] VATNITSKY S M. kQ factors for ionization chamber dosimetry in clinical proton beams[J]. Med Phys, 1996, 23(1): 25.