Development and Field Application of Multi-Channel Self-Calibrating Thermal Infrared Radiometer
-
摘要: 为更好的满足热红外波段卫星遥感器的外场定标需求,提高外场定标的定标频次、时效性和测量精度,研制了具有自动化观测能力的多通道自校准热红外辐射计,用于测量外场大气下行辐射亮度和地表辐射亮度。介绍了多通道自校准热红外辐射计的结构设计、工作原理和实验室定标,并在此基础上开展了外场实验。以青海省格尔木定标场的观测数据为例,结合场地多通道数据中的温度与发射率分离算法,得到定标场地的真实温度和通道发射率结果,对不确定度进行了评估。数据结果表明,多通道自校准热红外辐射计四个光谱通道获取的通道发射率相对标准偏差最大为0.012,场地温度偏差在0.11 K以内,研制的多通道自校准热红外辐射计能够满足热红外波段外场定标的应用需求,为开展热红外波段遥感器的场地自动化辐射定标的研究奠定了基础。Abstract: To better meet the field radiometric calibration requirements of the thermal infrared band satellite remote sensor, and to improve the calibration frequency, timeliness, and measurement accuracy of the field radiometric calibration, a Multi-channel Self-calibration Thermal Infrared Radiometer (MSTIR) with automatic observation capabilities has been developed for measuring the atmospheric downward radiance and ground surface radiance in the field. In this paper, the structure, working principle, and test results of the MSTIR were introduced, and field experiments are carried out on this basis. Taking the observation data of the Golmud calibration field in Qinghai Province as an example, combined with the temperature and emissivity separation algorithm of the multi-channel data of the site, the land surface temperature, and channel emissivity results of the calibration site were obtained, and the uncertainty was evaluated. The data results show that the maximum relative standard deviation of channel emissivity obtained by the four spectral channels of the MSTIR is 0.012 at maximum, and the field temperature deviation is within 0.11 K. The developed MSTIR can meet the application requirements of thermal infrared band field calibration, which lays a foundation for the application of site automatic radiometric calibration of thermal infrared band remote sensor.
-
Key words:
- thermal infrared /
- radiometric calibration /
- radiance /
- land surface temperature /
- spectral emissivity
-
表 1 通道辐射亮度与温度之间的转换系数
Table 1. Conversion coefficients between radiance and temperature of each channel
Channel/Coefficients ai bi di ni 1 334.492 1528.817 0.908 0.984 2 63.688 1803.538 1.980 1.063 3 40.892 1174.543 1.170 0.99957 4 778.984 927.611 4.063 0.913 表 2 通道发射率结果比较
Table 2. Comparison of channel emissivity
Channel Date 8.2~9.4 μm 10.1~11.1 μm 11.8~12.8 μm 8.0~13.2 μm Sept. 19, 2020 0.7707 0.9094 0.9624 0.8812 Relative standard deviation 0.012 0.0086 0.001 0.007 Sept. 20, 2020 0.7754 0.9160 0.9693 0.8797 Relative standard deviation 0.009 0.0092 0.002 0.008 Mean 0.7731 0.9127 0.9659 0.8804 Mean deviation 0.0047 0.0066 0.0069 0.0015 表 3 MSTIR辐射定标不确定度评估
Table 3. Uncertainty analysis of radiometric calibration for MSTIR
Source of uncertainty Symbol Uncertainty type Value Uncertainty of blackbody temperature u1 B 0.058% Uncertainty of blackbody emissivity u2 B 0.10% Uncertainty of fitting calibration coefficients u3 A 0.24% Non-linear u4 A 0.02% Instability u5 A 0.42% Combined uncertainty uc 0.50% -
[1] 卢乃锰, 丁雷, 郑小兵, 等. 中国空间辐射测量基准技术[J]. 遥感学报, 2020, 24(6): 672-680. [2] 宋健, 郝小鹏, 常稼强, 等. 长波辐射表校准装置研制[J]. 计量科学与技术, 2020(8): 8-13,7. doi: 10.3969/j.issn.1000-0771.2020.08.02 [3] 李传荣, 马灵玲, 唐伶俐, 等. 面向定量遥感的高分辨遥感综合定标场及其应用[J]. 遥感学报, 2021, 25(1): 198-219. [4] 胡朝云, 郝小鹏, 宋健, 等. 红外高光谱大气探测仪星载固定点黑体辐射源的研制[J]. 计量学报, 2019, 40(2): 232-239. [5] 刘裕盛, 蔡静. 改进型封装固定点黑体在辐射测温中的应用[J]. 计量学报, 2021, 42(9): 1149-1154. doi: 10.3969/j.issn.1000-1158.2021.09.05 [6] 常稼强, 郝小鹏, 吕彪, 等. 自校准地表/水表面红外辐射测温仪的研制[J]. 计量学报, 2019, 40(2): 240-245. [7] 张勇, 李元, 戎志国. 中国遥感卫星辐射校正场陆表热红外发射率光谱野外测量[J]. 光谱学与光谱分析, 2009, 29(5): 1213-1217. doi: 10.3964/j.issn.1000-0593(2009)05-1213-05 [8] 吴骅, 李秀娟, 李召良, 等. 高光谱热红外遥感: 现状与展望[J]. 遥感学报, 2021, 25(8): 1567-1590. [9] 李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016, 20(5): 899-920. [10] 张允祥, 李新, 韦玮, 等. 基于多通道温度与发射率分离算法的敦煌场地红外特性研究[J]. 光学学报, 2019, 39(10): 1028003. [11] 朱金顺, 任华忠, 叶昕, 等. 热红外遥感地表温度与发射率地面验证进展[J]. 遥感学报, 2021, 25(8): 1538-1566. [12] 杨雪, 柏成玉, 王景辉, 等. 耳温计检定校准用黑体空腔有效发射率比较与亮度温度比对实验[J]. 计量科学与技术, 2021, 65(9): 40-43. doi: 10.12338/j.issn.2096-9015.2020.0105 [13] 潘奕捷, 原遵东, 陆启迪, 等. 黑体辐射源HT-9500的空腔温场测量[J]. 计量技术, 2018(4): 10-13. [14] Zhang Yong, Li Zheng Long, Li Jun. Comparisons of emissivity observations from satellites and the ground at the CRCS Dunhuang Gobi site[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(22): 13026-13041. [15] Mira M, Schmugge T J, Valor E, et al. Comparison of thermal infrared emissivities retrieved with the two-lid box and the TES methods with laboratory spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1012-1021. doi: 10.1109/TGRS.2008.2008901