Optimal Design of the Impact Structure of Spring Impactor Calibration Device Based on Response Surface Method
-
摘要: 为了提升弹簧冲击器校准装置的检测能力,减少碰撞过程的能量损失,以最小化冲击端结构的变形量和构件质量为优化目标,提出了基于响应面法的冲击端结构优化设计方法。优化结果表明:冲击端结构尺寸与最大变形量的关系呈非线性变化,与质量的关系呈部分线性变化;摆杆冲击端结构在满足强度要求的同时,最大变形量降低了24.59%,质量减少了12.97%,兼顾高强度和轻量化的要求,证明了所提出的基于响应面曲线拟合和多目标变量优化的冲击端结构件优化设计方法的有效性。响应面曲线的优化方法在保证精度的同时提高了优化效率,为弹簧冲击器校准装置的优化提供了新路径。Abstract: In order to improve the detection ability of the spring impactor calibration device and reduce the energy loss in the collision process, the impact structure optimization design method based on the response surface method is proposed with the optimization objective of minimizing the deformation of the impact structure and the mass of the components. Optimization results show that the relationship between the impact structure size and the maximum deformation is non-linear, and the relationship with the mass is partially linear. The impact structure of the pendulum meets the strength requirements while the maximum deformation is reduced by 24.59% and the mass is reduced by 12.97%, taking into account the requirements of high strength and light weight, which proves the effectiveness of the proposed impact end optimization method based on response surface curve fitting and multi-objective variable optimization. The response surface curve optimization method improves the optimization efficiency while ensuring the accuracy, and provides a new path for the optimization of the spring impactor calibration device.
-
表 1 初始结构参数
Table 1. Initial structural parameters
参数 P1 P2 P3 P4 P5 P6 数值/mm 6 120 50 20 10 4 表 2 CCD法自变量与试验点数量的关系
Table 2. The relationship between the independent variable and the number of test points with CCD
设计变量m 1 2 3 4 5 6 7 8 析因系数ζ 0 0 0 0 1 1 1 2 试验点n 5 9 15 25 27 45 79 81 表 3 各优化参数的初始值和变化范围
Table 3. Initial value and variation range of each optimization parameter
参数 P1 P2 P3 P4 P5 P6 初始值
/mm6 120 50 20 10 4 变化范围
/mm5.4~6.6 108~132 45~55 18~22 9~11 3.6~44 表 4 优化前后各参数对比
Table 4. Comparison of parameters before and after optimization
参数 初始值 优化后 变形量 P1 6 6.0918 0.0918 P2 120 108.2229 11.7771 P3 50 45.4439 4.5561 P4 20 18.9236 1.0764 P5 10 9.8007 0.1993 P6 4 3.9466 0.0534 P7 0.052492 0.045681 0.006811 P8 0.011252 0.008485 0.002767 -
[1] 黄志铭. 摆球弹性碰撞实验分析构建弹簧冲击锤校准装置[J]. 工业计量, 2016, 26(S2): 27-30. [2] 江国洪, 陈永迪. 弹簧冲击器校准装置校准方法[J]. 电子技术与软件工程, 2019(12): 90. [3] LEE J J, PARK G J. Optimization of the structural and process parameters in the sheet metal forming process[J]. Journal of Mechanical Science and Technology, 2014, 28(2): 605-619. doi: 10.1007/s12206-013-1125-4 [4] 张雷, 张立华, 王家序, 等. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644,691. doi: 10.3785/j.issn.1008-973X.2019.04.004 [5] 武照云, 鱼鹏飞, 张毓兰, 等. 基于响应面分析法的粮食搬运RGV抓手优化设计[J]. 包装与食品机械, 2021, 39(1): 50-55. [6] 段成红, 高庆东, 刘观日, 等. 基于Workbench的隧道管结构优化设计[J]. 压力容器, 2019, 36(10): 32-37,61. doi: 10.3969/j.issn.1001-4837.2019.10.006 [7] TSE-MIN Y, CHOI K K. 3D shape optimal design and automatic finite element regridding[J]. International Journal for Numerical Methods in Engineering, 2010, 28(2): 369-384. [8] 代春香, 孟令宽, 李三雁. 吊具夹持机构的结构优化研究[J]. 中国测试, 2019, 45(10): 164-168. doi: 10.11857/j.issn.1674-5124.2018120054 [9] 国家质量监督检验检疫总局. 弹簧冲击器校准规范: JJF 1475-2014[S]. 北京: 中国标准出版社, 2014. [10] 付稣昇. Ansys Workbench 17.0 数值模拟与实例精解[M]. 北京: 人民邮电出版社, 2017. [11] 刘刚, 刘西娅, 刘尧, 等. 基于响应面法的变压器静电环绝缘优化设计[J/OL]. 高电压技术[2021-11-01].https://doi.org/10.13336/j.1003-6520.hve.20211219. [12] ZHANG Y, HO S L, FU W. Applying Response Surface Method to Oil-Immersed Transformer Cooling System for Design Optimization[J]. IEEE Transactions on Magnetics, 2018(11): 1-5. [13] 王欣欣, 李中凯, 刘等卓. 基于响应面法的玻璃钻孔支撑结构优化设计[J]. 组合机床与自动化加工技术, 2021(2): 131-135. doi: 10.13462/j.cnki.mmtamt.2021.02.032 [14] RAEISIAN L, NIAZMAND H, EBRAHIMNIA-BAJESTAN E, et al. Thermal management of a distribution transformer: An optimization study of the cooling system using CFD and response surface methodology[J]. International Journal of Electrical Power & Energy Systems, 2018, 104(1): 443-455. [15] LI J T, LIU Z J, JABBAR M A, et al. Design optimization for cogging torque minimization using response surface methodology[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1176-1179. doi: 10.1109/TMAG.2004.824809