Development of Portable Time Interval Measuring Instrument for Liquid Flow Standard Devices
-
摘要: 对于液体流量标准装置而言,计时系统的计时准确性直接影响装置最终流量测量结果,需要定期对其开展维护和检定。传统的计时检测系统往往体积较大,搬运和携带不易,其一般与测控系统相互集成,拆卸送检困难,并且缺少适合流量装置特点的标定接口。针对现有计时检测系统的局限性,设计并研制了一款面向瞬时流量法液体标准装置的便携式时间间隔测试仪,其可测量时间间隔范围为1 μs~10000 s,测量精度为10 μs,显示分辨率不低于1 μs,准确性不低于1.0×10−6。基于中国计量科学研究院热水流量标准装置开展了相关性能验证实验,测试结果表明:装置计时系统的相对示值误差优于0.0024%,研制的时间间隔测试仪相对误差优于4.2×10−7,重复性优于1.82×10−7,其计时准确度高、性能稳定可靠,可有效满足液体流量标准装置计时系统的检定和测试需求,也可以为未来液体流量装置测量能力提升与液体流量计量技术的发展发挥积极作用。Abstract: The timing accuracy of the timing system directly affects the final flow measurement result of liquid flow standard devices, which requires regular maintenance and calibration. The traditional timing verification system is often bulky and difficult to carry and transport. It is generally integrated with the measurement and control system, difficult to disassemble and send for inspection, and lacks the calibration interface suitable for the experimental characteristics of flow standard device. In view of the limitations of the existing timing system verification methods, a portable time interval measuring instrument was designed and developed for the instantaneous flow method liquid flow standard devices, which can measure the time interval range from 1 μs to 10000 s, with measurement accuracy of 10 μs, display resolution not less than 1μs, and the accuracy is not less than 1.0×10−6. The performance verification experiment was carried out based on the hot water flow standard facility of China National Institute of Metrology, and the test results showed that: The relative error of the timing system is better than 0.0024 %, and the relative error of the time interval measuring instrument is better than 4.2×10−7 and its repeatability is better than 1.82×10−7. 10 μs, the display resolution is not less than 1μs, and the accuracy is not less than 1.0×10−6. The performance verification experiment was carried out based on the hot water flow standard facility of China National Institute of Metrology, and the test results showed that: The relative error of the timing system is better than 0.0024%, and the relative error of the time interval measuring instrument is better than 4.2×10−7 and its repeatability is better than 1.82×10−7. Its timing accuracy is high and its performance is stable and reliable, which can effectively meet the verification and testing requirements of the timing system of the liquid flow standard facility. It also plays a positive role in improving the measuring capacity of liquid flow facility and the development of liquid flow measurement technology in the future.
-
表 1 NIM热水流量标准装置计时系统性能验证实验结果
Table 1. The performance verification experimental results of timing system of NIM hot water flow standard device
实验
序号标准计
时/s时间间隔
测试仪/s标准相
对误差计时系
统/s系统平均
相对误差1 1 1.0000 0.0% 1.0000 0.0000% 2 10 10.0000 0.0% 10.0001 0.0010% 3 30 30.0000 0.0% 30.0004 0.0013% 4 60 60.0000 0.0% 60.0009 0.0015% 5 120 120.0000 0.0% 120.0017 0.0014% 6 300 300.0000 0.0% 300.0049 0.0016% 7 600 600.0002 3.3×10−7 600.0116 0.0019% 8 900 900.0003 3.3×10−7 900.0204 0.0022% 9 1200 1200.0005 4.2×10−7 1200.0293 0.0024% 重复性 1.82×10−7 7.12×10−6 -
[1] 苏彦勋, 梁国伟, 盛健. 流量计量与测试 [M]. 第二版. 北京: 中国计量出版社, 2007. [2] 段慧明. 液体流量标准装置和标准表法流量标准装置[M]. 北京: 中国计量出版社, 2004. [3] 庄园, 张宁宁, 马龙博, 等. 液体流量标准装置流量控制系统设计[J]. 中国测试, 2020, 46(11): 126-131. doi: 10.11857/j.issn.1674-5124.2019080027 [4] 谢文强, 燕南飞, 薛琴. 水流量标准装置的设计与研究[J]. 自动化与仪表, 2015, 30(10): 28-31. doi: 10.3969/j.issn.1001-9944.2015.10.007 [5] 信彦峰, 崔宝, 贾正红, 等. 水大流量标准装置研制[J]. 计量科学与技术, 2021, 65(10): 67-69,62. [6] 刘莉, 周昶, 高峰, 等. 微小液体流量装置技术发展研究[J]. 计量学报, 2020, 41(z1): 1-6. doi: 10.3969/j.issn.1000-1158.2020.Z1.01 [7] 曹久莹, 王科, 顾建飞. 液体流量标准装置换向器检测误差及检定方法分析比较[J]. 中国计量, 2021(9): 109-113. [8] 郑玉桥, 仲林, 沈理. 液体流量标准装置测控系统设计与研究[J]. 中国计量, 2020(11): 84-86. [9] 耿存杰, 张东飞, 陈曹浪. 基于双计时法标准表法水流量标准装置的研制[J]. 工业计量, 2020, 30(2): 47-49. doi: 10.13228/j.boyuan.issn1002-1183.2019.0239 [10] 全国流量容量计量技术委员会. 液体流量标准装置: JJG 164-2000[S]. 北京: 中国计量出版社, 2000. [11] 陈炜骄, 孟涛, 李晓鹏. 水流量标准装置期间核查方法研究[J]. 计量技术, 2020(6): 76-79. [12] 李高峰, 王宏伟, 邹德超. 静态质量法液体流量标准装置的不确定度评定[J]. 计量技术, 2014(6): 80-81. [13] 徐望, 陈鑫, 李方能, 等. 高精度时间间隔测量方法分析[J]. 导航定位学报, 2021, 9(4): 71-78. doi: 10.3969/j.issn.2095-4999.2021.04.011 [14] 刘威, 任津萱, 曲鑫. 时间间隔测量的高精度技术研究[J]. 单片机与嵌入式系统应用, 2021, 21(12): 46-49. [15] 史慧超, 康希锐, 孟涛. 基于奇异值分解的水流量标准装置状态监测方法研究[J]. 计量学报, 2020, 41(11): 1358-1363. doi: 10.3969/j.issn.1000-1158.2020.11.08 [16] 孟涛, 王池, 邢超. 基于主成分分析的流量装置比对传递标准稳定性研究[J]. 计量学报, 2019, 40(5): 823-828. doi: 10.3969/j.issn.1000-1158.2019.05.14