Study on Energy Measurement Pricing Units and Reference Values of Natural Gas in China
-
摘要: 为开展天然气计价方式转换的本地化研究工作,基于天然气能量计量计价模型,通过文献调研能量计量计价单位,核算不同方式基准值,探索基准值动态调整可行性,提出了适用于我国的天然气能量计量计价单位及基准值。结果表明,天然气能量计量计价使用基准热值作为计量计价单位,更能反映天然气本身的特征和利用价值;基准热值可以是固定赋值,也可以是调整赋值,其调整量需要结合天然气周期热值稳定性和价格动态确定。以清丰站和乙烯支线南港站为气源,下游用户为研究对象,核算了36.0 MJ/m3作为固定基准热值,和平均高位发热量作为调整基准热值的计价转换结果,研究显示,所选择的基准热值和赋值方式均能支撑计价方式转变,并可以将不同气源、品质的天然气核算成数值相互比较;与固定基准热值相比,可调整基准热值对气源的适用性更强。Abstract: In order to conduct localized research on the conversion of natural gas pricing methods, this study investigated energy measurement units in the literature based on the natural gas energy pricing model. Reference values were calculated for different methods, and the feasibility of dynamic adjustment of the reference values was explored. The study proposes natural gas energy measurement units and reference calorific values suitable for China. The results showed that using the reference calorific value as the unit of measurement and pricing for natural gas energy can better reflect the characteristics and value of natural gas itself. The reference calorific value can be assigned a fixed value or an adjusted value, and the amount of adjustment should be determined dynamically based on the stability of the natural gas periodic calorific value and its price. Using Qingfeng station and Nangang station of Ethylene branch pipeline as the gas source and downstream users as the object, pricing conversion results were calculated using 36.0 MJ/m3 as the fixed reference calorific value and average high calorific value as the adjusted reference calorific value. The research indicated that the selected reference calorific value and assignment method could support the pricing method conversion, and natural gas of different sources and qualities could be compared with each other. The flexibility of using the adjusted assignment for reference calorific values was more substantial than the fixed method.
-
表 1 基准热值价格测算结果(固定基准热值)
Table 1. Reference calorific value price calculation results (fixed reference calorific value)
体积 1 1 1 1 1 交接站1 0.956 0.952 0.950 0.951 0.974 交接站2 1.059 1.055 1.053 1.054 1.080 交接站3 1.060 1.056 1.053 1.054 1.080 交接站4 1.031 1.031 1.031 1.031 1.031 南港站 1.049 1.035 1.039 1.058 1.057 表 2 基准热值价格测算结果(调整基准热值)
Table 2. Reference calorific value price calculation results (adjusted reference calorific value)
体积 1 1 1 1 1 交接站1 0.918 0.914 0.912 0.913 0.935 交接站2 1.017 1.013 1.011 1.012 1.037 交接站3 1.017 1.013 1.011 1.012 1.037 交接站4 0.989 0.989 0.989 0.989 0.989 南港站 1.003 0.988 0.992 1.011 1.010 -
[1] 史丹. 能源蓝皮书: 中国能源发展前沿报告(2021)[M]. 北京: 社会科学文献出版社, 2021. [2] 周守为, 朱军龙, 单彤文, 等. 中国天然气及LNG产业的发展现状及展望[J]. 中国海上油气, 2022, 34(1): 1-8. doi: 10.11935/j.issn.1673-1506.2022.01.001 [3] 王池, 李春辉, 王京安, 等. 天然气能量计量系统及方法[J]. 计量学报, 2008, 29(5): 403-406. [4] 常宏岗, 段继芹. 中国天然气计量技术及展望[J]. 天然气工业, 2020, 40(1): 110-118. doi: 10.3787/j.issn.1000-0976.2020.01.015 [5] 罗勤. 天然气能量计量在我国应用的可行性与实践[J]. 天然气工业, 2014, 34(2): 123-129. doi: 10.3787/j.issn.1000-0976.2014.02.020 [6] 隆游赟, 李琳, 张辉. 天然气流态对计量站小流量检定工作质量影响研究[J]. 计量技术, 2019(12): 32-35. [7] 黄维和, 段继芹, 常宏岗, 等. 中国天然气能量计量体系建设探讨[J]. 天然气工业, 2021, 41(8): 186-193. doi: 10.3787/j.issn.1000-0976.2021.08.017 [8] 黄维和, 罗勤, 黄黎明, 等. 天然气能量计量体系在中国的建设和发展[J]. 石油与天然气化工, 2011, 40(2): 103-108. doi: 10.3969/j.issn.1007-3426.2011.02.001 [9] 李春辉, 徐明, 沈超, 等. 天然气能量计量不确定度评估[J]. 计量学报, 2020, 42(z1): 22-27. doi: 10.3969/j.issn.1000-1158.2020.Z1.05 [10] 黄黎明, 张福元, 郭绪明, 等. 天然气能量测定: GB/T 22723—2008[S]. 北京: 中国标准出版社, 2008. [11] 孙鹏. 我国天然气定价机制研究[D]. 北京: 中国石油大学(北京), 2007. [12] 曹琛. 我国天然气定价机制研究[D]. 青岛: 中国石油大学(华东), 2007. [13] 潘长青. 中国天然气定价机制研究[D]. 青岛: 中国石油大学(华东), 2012. [14] ISO. Natural gas-energy determination: ISO 15112: 2011[S]. ISO, 2008. [15] 邹伟. 浅析天然气取样常用方法及其对分析结果的影响[J]. 计量科学与技术, 2021, 65(7): 65-68. doi: 10.12338/j.issn.2096-9015.2019.0414 [16] 邹伟. 浅谈移动式天然气计量标准装置的期间核查[J]. 计量与测试技术, 2020, 47(9): 83-87, 91. [17] 黎荣发, 凌光盛, 赵豪, 等. 低压大流量热式气体质量流量计分流测试方法研究[J]. 计量科学与技术, 2022, 66(8): 3-6, 12.