Linear Fitting in Gas Measurement
-
摘要: 气体成分测量中可使用单点、双点、线性等多种校准方法,线性校准可分为普通线性最小二乘法、加权双变量最小二乘法线性拟合等多种细分方法。对不同文献介绍的上述两种方法进行了比较分析,并对加权双变量最小二乘法线性拟合中应注意的事项进行了介绍。当测量信号的不确定度已经与气体标准物质的不确定度水平接近,甚至低于标准物质的不确定度时,采用加权双变量最小二乘法线性拟合的方法处理测量结果更加合理。使用加权双变量最小二乘法线性拟合时,权重为标准不确定度平方的倒数,可采用二步迭代法计算截矩和斜率的数值;采用数值微分法计算截矩和斜率的标准不确定度。分析函数和校准函数都可以用于加权双变量最小二乘法线性拟合,对于被测样品浓度及其不确定度的计算,采用这两种函数所获得的结果是相同的,但是在计算不确定度时,采用分析函数更为简便。Abstract: Various calibration methods such as single-point, double-point, and linear can be used in gas composition measurements, and linear calibration can be divided into various subdivision methods such as ordinary linear least squares and weighted bivariate least squares linear fitting. In this paper, the above two methods introduced in different literatures are compared and analyzed, and the matters that should be noted in the weighted bivariate least squares linear fitting are introduced. When the uncertainty of the measured signal is already close to or even lower than the uncertainty level of the gas standard, it is more reasonable to use the weighted bivariate least squares linear fitting method to process the measurement results. When using the weighted bivariate least squares linear fit, the weights are the reciprocal of the squared standard uncertainty, and the values of the intercept and slope can be calculated using the two-step iterative method; the standard uncertainty of the intercept and slope is calculated using the numerical differentiation method. Both analytical and calibration functions can be used for weighted bivariate least squares linear fitting. For the calculation of the measured sample concentration and its uncertainty, the results obtained by using these two functions are the same, but it is easier to use the analytical function when calculating the uncertainty.
-
Key words:
- gas /
- measurement /
- linear fitting /
- least square method /
- reference materials
-
表 1 ISO 6143:2001中举例的数据
Table 1. Data exemplified in ISO 6143:2001
参考标准 $ {x}_{i} $ $ u\left({x}_{i}\right) $ $ {y}_{i} $ $ u\left({y}_{i}\right) $ 1 4.5 0.045 0.1969 0.003938 2 18.75 0.1875 0.7874 0.015748 3 50 0.5 2.0228 0.040456 表 2 两种方法拟合结果
Table 2. Fitting results by two methods
方法 截矩$ {b}_{0} $ 斜率$ {b}_{1} $ ${x}_{1}'$ ${x}_{2}'$ ${x}_{3}'$ A 0.02492 0.04003 4.30 19.05 49.91 B 0.01452 0.04063 4.49 19.02 49.43 C 0.02453 0.04005 4.30 19.05 49.89 D 0.01640 0.04053 4.45 19.02 49.50 表 3 截矩和斜率的标准不确定度
Table 3. Standard uncertainty of intercept and slope
表 4 ISO 6143:2001附录中被测样品的测量数据
Table 4. Measurement data of the tested sample in the appendix of ISO 6143:2001
样品序号 $ {y}_{i} $ $ u\left({y}_{i}\right) $ 1 2.5800×10−1 5.1600×10−3 2 6.0000×10−1 1.2000×10−2 3 1.8000 3.6000×10−2 表 5 分析函数和校准函数线性拟合的比较
Table 5. Comparison of linear fitting between analytical function and calibration function
拟合参数 分析函数 校准函数 线性拟合 $ {b}_{0} $ −0.357467596 0.014524401 $ {b}_{1} $ 24.611520886 0.040631378 $ u\left({b}_{0}\right) $ 0.157157874 0.006174543 $ u\left({b}_{1}\right) $ 0.480487597 0.000793225 $ u\left({{b}_{0},b}_{1}\right) $ −0.056922921 −3.59326×10−6 被测样品的
计算结果$ {x}_{1} $ 5.99230 5.99230 $ u\left({x}_{1}\right) $ 0.16377 0.16377 $ {x}_{2} $ 14.40944 14.40944 $ u\left({x}_{2}\right) $ 0.35599 0.35599 $ {x}_{3} $ 43.94327 43.94327 $ u\left({x}_{3}\right) $ 1.16310 1.16309 -
[1] 赵辉, 赵华, 刘原栋. 基于国家标准物质资源共享平台探讨我国标准物质发展现状与趋势[J]. 化学试剂, 2017, 39(8): 856-860. [2] 李德林, 黎建余, 胡启亮. 比色法水硬度仪校准及测量不确定度评定[J]. 计量技术, 2017(8): 67-68. [3] ISO. Gas analysis - Comparison methods for the determination of the composition of gas mixtures bases on one- and two-point calibration: ISO 12963-2017[S/OL]. Geneva, 2017.https://www.iso.org/standard/64891.html. [4] 国家市场监督管理总局, 国家标准化管理委员会. 气体分析 测量过程及结果校准技术要求: GB/T 38677-2020[S]. 北京: 中国标准出版社, 2020. [5] 国家质量监督检验检疫总局, 国家标准化管理委员会. 气体分析 硫化物的测定 硫化学发光气相色谱法: GB/T 33318-2016[S]. 北京: 中国标准出版社, 2017. [6] 张群, 靳俊梅, 李筱翠. 工作场所空气中环氧乙烷测定结果不确定度评定[J]. 计量技术, 2020(3): 56-59. [7] 国家质量监督检验检疫总局. 标准物质的选择与应用: JJF1507-2015[S]. 北京: 中国质检出版社, 2015. [8] Joint Committee for Guides in Metrology (JCGM). Evaluation of measurement data - Guide to the expression of uncertainty in measurement: JCGM 100: 2008[S/OL]. Budapest, 2008.https://www.bipm.org/en/search?p_p_id=search_portlet&p_p_lifecycle=2&p_p_state=normal&p_p_mode=view&p_p_resource_id=%2Fdownload%2Fpublication&p_p_cacheability=cacheLevelPage&_search_portlet_dlFileId=41373434&p_p_lifecycle=1&_search_portlet_javax.portlet.action=search&_search_portlet_formDate=1663255885330&_search_portlet_query=JCGM+100&_search_portlet_source=BIPM. [9] EURACHEM/CITAC. Quantifying uncertainty in analytical measurement, third edition: EURACHEM/CITAC Guide CG 4[S/OL]. Poland, 2012. http://eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf. [10] ISO. Gas analysis - Comparison methods for determining and checking the composition of calibration gas mixtures: ISO 6143: 2001[S/OL]. Geneva, 2001.https://www.iso.org/standard/24665.html. [11] 国家质量监督检验检疫总局, 国家标准化管理委员会. 气体分析 校准混合气组成的测定和校验 比较法: GB/T 10628-2008[S]. 北京: 中国标准出版社, 2008. [12] Flores E, Viallon J, Choteau T, et al. CCQM-K120 (Carbon dioxide at background and urban level)[J]. Metrologia, 2019, 56(1A): 8001. doi: 10.1088/0026-1394/56/1A/08001 [13] Flores E, Viallon J, Choteau T, et al. International comparison CCQM-K82: methane in air at ambient level (1800 to 2200) nmol/mol[J]. Metrologia, 2015, 52(1A): 8001. doi: 10.1088/0026-1394/52/1A/08001 [14] 李剑, 王德发, 夏春, 等. 用于低浓度NO2精确测量的傅里叶变换红外光谱系统研究[J]. 计量学报, 2019, 40(3): 517-521. doi: 10.3969/j.issn.1000-1158.2019.03.27 [15] 李佳, 胡树国, 宋栋梁, 等. GC-FID法测定低含量氟利昂气体标准物质的研究[J]. 计量技术, 2013(9): 13-16. [16] York D. Least-squares fitting of a straight line[J]. Canadian Journal of Physics, 1966, 44: 1079-1086. doi: 10.1139/p66-090 [17] 朱家平, 王亚平, 刘建坤, 等. 不确定度连续传递模型及其在化学测量中的应用[J]. 地质通报, 2009, 28(10): 1481-1485. doi: 10.3969/j.issn.1671-2552.2009.10.015 [18] 路远发, 朱家平, 汪群英. 基于不确定度连续传递模型的标准曲线双误差拟合程序[J]. 岩矿测试, 2011, 30(2): 238-243. doi: 10.3969/j.issn.0254-5357.2011.02.025 [19] York D. Least squares fitting of a straight line with corrected errors[J]. Earth and Planetary Science Letters, 1969, 5: 320-324.