Remote Reproduction of Standard Time Based on Variable Speed Integral PID Control
-
摘要: 随着高精密时间频率在各领域广泛应用,远程时间溯源需求在不断提高。为实现高精度高稳定度远程时间溯源,提出利用光纤时频链路实现高精度时间基准的远程复现,基于变速积分PID控制策略优化了原子钟驯服方法,利用中国计量科学研究院和平里与昌平两院区之间54 km的光纤时频比对链路验证了时间基准复现方案,实验结果表明:超过85%的远程复现时差绝对值优于0.3 ns;远程复现时间稳定度优于6 ps/d;远程复现频率稳定度优于5×10−16/d。Abstract: With the wide-ranging and deepening application of high-precision time and frequency in various fields, there is a growing demand for remote time traceability. In order to achieve high precision and high stability in long-range time traceability, this paper proposes using optical fiber time-frequency links to realize remote reproduction of high-precision time references. Furthermore, the atomic clock taming method is optimized using a variable speed integral PID control strategy. The time reference recurrence scheme is verified for the link between the National Institute of Metrology Hepingli campus and the Changping campus, spanning 54 km. The experimental results demonstrate that the absolute value of more than 85% of the remote reproduction time deviation is better than 0.3 ns, and the remote reproduction time stability is better than 6 ps/d. The stability of remote reproduction frequency is better than 5×10−16/d.
-
表 1 不同PID控制后的仿真钟差均值的标准偏差
Table 1. The standard deviation of the mean value of the simulated clock errors after different PID control
1/Ki Kp=0.3 Kp=0.4 Kp=0.5 标准偏差/ns 1/1000 0.190 0.183 0.185 1/2000 0.196 0.180 0.173 1/4000 0.206 0.185 0.173 1/8000 0.214 0.189 0.175 表 2 不同v值PID控制后仿真钟差均值的标准偏差、频率稳定度(Kp =0.5,Ki=2000)
Table 2. Standard deviation and frequency stability of the mean value of simulated clock error after PID control with different v values (Kp =0.5, Ki =2000)
v 标准偏差/ns 重叠阿伦方差 0 0.1729 3.45e-15 1000 0.1721 3.44e-15 2000 0.1717 3.44e-15 4000 0.1717 3.44e-15 表 4 远程时间复现的时间、频率稳定度统计表
Table 4. Statistical table of time and frequency stability in remote time reproduction
控制方法 平均时间 1 1000 10000 86400 100000 固定PID TDEV/s 3.01e-12 1.37e-10 6.19e-11 2.45e-11 2.20e-11 MDEV 5.22e-12 2.38e-13 1.07e-14 4.91e-16 3.81e-16 变速积分PID TDEV/s 2.2e-12 1.13e-10 2.79e-11 5.83e-12 5.57e-12 MDEV 3.80e-12 1.95e-13 4.84e-15 1.17e-16 9.65e-17 表 3 远程时间复现的时差统计表
Table 3. Statistical table of time deviation in remote time reproduction
控制方法 观测点数 0<|*|<=0.2 ns 0.2<|*|<=0.3 ns 0.3 ns <|*|<=0.4 ns 0.4 ns<|*|<=0.9 ns 固定PID 1274243 685529 254466 164284 169306 百分比 53.80% 19.97% 12.89% 13.29% 变速积分PID 1294977 867528 239248 121927 66086 百分比 67.00% 18.48% 9.42% 5.09% -
[1] 林弋戈, 梁坤, 方占军. 时间单位—秒的演进[J]. 中国计量, 2018(5): 16-17. [2] 房芳, 张爱敏, 李天初. 时间: 从天文时到原子秒[J]. 计量技术, 2019(5): 7-10. [3] 梁坤, 郝爽雨. NIMDO远程时间溯源装置—构建精准时间溯源传递体系[J]. 科技纵览, 2019(7): 78-79. [4] Liang K , Zhang A , Yang Z , et al. Preliminary time transfer through optical fiber at NIM[C]. 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (FCS). IEEE, 2015. [5] Borase R P, Maghade D K, Sondkar S Y, et al. A review of PID control, tuning methods and applications[J]. International Journal of Dynamics and Control, 2020(5): 818-827. [6] 刘金琨. 先进PID控制MATLAB仿真[M]. 北京: 电子工业出版社, 2004. [7] Zhu Kai, Fan Jin, Liang Kun, Tang Wei, et al. The time and frequency standard system for FAST receivers[J]. Research in Astronomy and Astrophysics, 2020, 20(5): 7. [8] 杨旭海, 翟惠生, 胡永辉, 等. 基于新校频算法的GPS可驯铷钟系统研究[J]. 仪器仪表学报, 2005(1): 41-44. doi: 10.3321/j.issn:0254-3087.2005.01.009 [9] 李俊瑶, 周华伟, 黄亮. 频标驯服算法的改进研究[J]. 光学与光电技术, 2019, 17(2): 59-63. doi: 10.19519/j.cnki.1672-3392.2019.02.010 [10] Jin Zeng, Li Guang Wang, Meng Jun Ye, et al. Research of Several PID Algorithms Based on MATLAB[J]. Advanced Materi-als Research , 2013, 2542: 760-762. [11] Patrizia T. Statistical and Mathematical Tools for Atomic Clocks[J]. Metrologia, 2008, 45(6): 183-192. doi: 10.1088/0026-1394/45/6/S24 [12] 王祎晨. 基于抗积分饱和增量式PID算法的电机控制的研究[J]. 电气传动自动化, 2017, 39(6): 4. doi: 10.3969/j.issn.1005-7277.2017.06.003 [13] Silva L, Flesch R, JE Normey-Rico. Analysis of Anti-windup Techniques in PID Control of Processes with Measurement Noise - ScienceDirect[J]. IFAC-PapersOnLine, 2018, 51(4): 948-953. doi: 10.1016/j.ifacol.2018.06.100 [14] Gopal M, Sivakumar K. A Dual Seven-level Inverter Supply for an Open-end Winding Induction Motor Drive[J]. IEEE Trans. Ind. Electron., 2009, 56(5): 1665-1673. doi: 10.1109/TIE.2008.2010159 [15] 梁坤, 方维, 顾杨义, 等. 远程时间传递与溯源方法, 装置及体系[J]. 计量科学与技术, 2021(4): 11. [16] 赵莎, 卢达, 孟静, 等. 时间频率远程校准在电力系统中的应用[J]. 计量科学与技术, 2021, 65(4): 14-18. [17] 韩凯, 丁超, 郁黎, 等. 基于NIMDO的时间频率远程校准应用研究[J]. 计量科学与技术, 2021, 65(7): 9-12. doi: 10.12338/j.issn.2096-9015.2020.8014 [18] 崔广新, 赵熙. 河南远程时间频率溯源站系统研究与建设[J]. 计量科学与技术, 2021, 65(7): 13-16,64. doi: 10.12338/j.issn.2096-9015.2020.8009