Research on Battery Simulator for Measurement and Test of Electric Bicycle Charging Pile
-
摘要: 为解决电动自行车充电桩计量测试过程中存在的充放电时间长、效率低、成本高、复现性差等问题,避免使用蓄电池带来的安全隐患,提高检测效率和计量结果的可靠性,设计了一种基于STM32和数字可调电源的电池模拟器。该模拟器由MCU控制单元、数字可调电源、采样电路、通道通断及极性切换电路、程控负载等部分组成。本文介绍了电池模拟器的工作原理、各模块组成和软件控制流程,并给出了测试数据。测试结果表明,该电池模拟器具有连续稳定的可调电源输出以及可调负载,能较好地模拟蓄电池的三段式充电模式,可满足充电桩的计量测试需要。Abstract: To solve the problems of long charging and discharging time, low efficiency, high cost, and poor reproducibility in the measurement and test of electric bicycle charging pile, avoid potential safety hazards caused by the use of battery and improve the detection efficiency and reliability of measurement results, a battery simulator based on STM32 and digital adjustable power supply is designed. The simulator consists of MCU control unit, digital adjustable power supply, sampling circuit, channel on/off and polarity switching circuit, programmable load, and other parts. The working principle, module composition, and software control flow of the battery simulator are introduced, and the test data are given. The test results show that the battery simulator has continuous and stable adjustable power supply output and adjustable load, which can better simulate the three-stage charging mode of the battery and meet the measurement and testing needs of the charging pile.
-
Key words:
- electric bicycle /
- charging pile /
- measurement and test /
- battery simulator
-
表 1 充电桩的输出电压和电流
Table 1. Output voltage and current of charging pile
电池模拟器
电压/V电池模拟器
程控负载/Ω充电桩
输出电压/V充电桩
输出电流/A44 17.1 46.1 2.375 45 18.5 46.8 2.374 46 20.0 50.6 2.374 47 21.8 55.2 2.374 49 40.0 59.0 1.415 51 48.0 58.9 1.194 52 60.0 58.9 0.955 52 80.0 58.9 0.714 55 240 55.7 0.232 -
[1] 公安部. 关于规范电动车停放充电加强火灾防范的通告[EB/OL]. (2017-12-29)[2022-07-28]. http://www.gov.cn/xinwen/2018-01/02/content_5252486.htm. [2] 赵福全, 赵世佳, 刘宗巍. 中国低速电动车产业的现状、问题与未来发展策略[J]. 汽车工程学报, 2017(5): 313-320. [3] 张保增, 李鹏, 潘泽阳, 等. 一种电动自行车充电桩的设计[J]. 微型机与应用, 2015(34): 29-31, 34. [4] 邱亚楠, 陈波, 顾纯清. 电动自行车用充电器产品发展状况分析[J]. 电动自行车, 2016(9): 37-38. [5] 杨钰婷. 电动自行车规制问题研究[D]. 北京: 北方工业大学, 2018. [6] 张光升, 尹国祥, 陈文利. 过载保护用低压电器检测与试验方法[J]. 低压电器, 2010(1): 46-48. [7] 中国自行车协会. 电动自行车集中充电设施设备技术规范: T/CHINABICYCLE 001-2018[S]. 北京: 中国标准出版社, 2018. [8] 全国法治计量管理计量技术委员会. 通用计量术语及定义: JJF 1001—2011[S]. 北京: 中国质检出版社, 2012. [9] 杨永清, 牛智强. 浅析铅酸蓄电池的充放电过程[J]. 移动电源与车辆, 2004(4): 37-39. [10] 徐文城. 自适应电动自行车充电装置的研究[D]. 北京: 北京交通大学, 2013. [11] 李龙. 电池模拟器技术综述[J]. 科技风, 2019(2): 223. [12] 赖婷, 潘小琴, 文倩, 等. 基于STM32单片机的数控可调开关电源设计[J]. 电子世界, 2019(7): 143-144. [13] 王胜利. 锂电池模拟器的关键技术研究[D]. 成都: 电子科技大学, 2017. [14] 李练兵, 姚路, 何宝树, 等. 一种高精度电池模拟器的设计[J]. 电源技术, 2018, 42(1): 101-104. [15] 吴兆耀, 余波, 张容. 一种新型隔离式可调开关电源的设计[J]. 成都师范学院学报, 2015, 31(7): 114-116. [16] 方伟明, 程汉湘, 彭洁锋, 等. 基于DSP充电桩的检测电路设计与研究[J]. 测控技术, 2017, 36(2): 137-140. [17] 陈益胜, 冯理贤, 刘文刚. 时间溯源在汽车充电桩测试仪计量中的应用[J]. 计量科学与技术, 2021, 65(7): 25-27,8. [18] 宋伟杰. 基于开关变换器的蓄电池模拟系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [19] 莫熙, 周伟, 窦晓波, 等. 基于STM32的程控直流电子负载设计[J]. 电测与仪表, 2014, 51(18): 85-91. [20] 吴忠强, 王国勇, 谢宗奎, 等. 基于IALO算法的蓄电池参数辨识[J]. 计量学报, 2021, 42(9): 1206-1213. doi: 10.3969/j.issn.1000-1158.2021.09.14 [21] 朱江, 韩东, 魏朋飞, 等. 一种电动自行车的电池模拟器及系统和检测充电器的方法: ZL202010083063.3[P]. 2022-08-05.