Research Progress of Rapid Oil Detection Method Based on Near Infrared Spectroscopy
-
摘要: 汽油和柴油是社会生产中应用广泛的石化产品,汽、柴油理化性质的合格与否决定了内燃机能否维持正常运转,以及其尾气排放是否达标。作为一种快速、高效、准确、绿色的分析方法,近红外光谱技术已经应用到汽、柴油部分理化性质的分析中。为了提高近红外光谱技术分析油品性质的效果,促进该技术的发展,对近红外光谱技术在汽、柴油典型理化性质指标检测中的应用、基于近红外光谱技术的数据融合方法以及近红外油品分析仪的研制进行了综述,并阐述了近红外光谱油品分析技术的重要发展方向。Abstract: Gasoline and diesel are widely used petrochemical products in social production. The physicochemical property of gasoline and diesel determines whether the internal combustion engine can maintain normal operation and whether its exhaust emissions meet the standards. As a fast, efficient, accurate, and green analysis method, near-infrared spectroscopy (NIRS) has been applied to analyze the part of the physicochemical properties of gasoline and diesel. To improve the effect of NIRS in analyzing oil properties and promote the development of this technology, the application of NIRS technology in the detection of typical physicochemical properties of gasoline and diesel, data fusion method based on NIRS, and the development of NIR oil analyzer were reviewed, and the important development directions of NIRS analysis technology were described.
-
Key words:
- near infrared spectroscopy /
- gasoline /
- diesel /
- data fusion /
- near infrared oil analyzer /
- oil rapid analysis
-
表 1 同时分析多种汽、柴油性质指标的近红外光谱快检方法
Table 1. The NIRS detection method to analyze the multiple properties of gasoline and diesel simultaneously
性质指标 建模方法 样品数量 年份 参考文献 汽油辛烷值、蒸汽压、密度、芳烃含量、苯含量、
甲基叔丁基醚含量、10%和50%蒸馏温度主成分分析和偏最小二乘法 300 1997 [18] 柴油闪点、汽油苯含量和辛烷值 偏最小二乘法 249汽油样品、128柴油样品 2005 [19] 生物柴油碘值、冷凝点、黏度和密度 偏最小二乘法 91~311 2008 [20] 生物柴油密度、黏度、甲醇含量和水含量 多元线性回归和偏最小二乘回归 612 2011 [21] 生物柴油馏程、碘值和冷滤点 人工神经网络 609 2011 [22] 甲醇、乙醇、甲基叔丁基醚、甲缩醛和N,N-二甲
基苯胺等10种含氧化合物及添加剂斜投影算法和一元回归标准曲线 10 2015 [23] 柴油十六烷值、50%回收温度、凝点、
黏度、密度和芳烃含量和硫含量监督距离保持投影(SDPP)算法 150 2015 [24] 汽油辛烷值、烯烃含量、芳烃含量、苯含量、氧含量、
甲基叔丁基醚含量、密度、蒸汽压和馏程支持向量机 498 2020 [25] 柴油馏程、密度、芳烃含量和黏度 偏最小二乘法 395 2021 [26] 汽油密度、蒸汽压、馏程、辛烷值、芳烃含量、烯烃
含量、苯含量、氧含量和甲基叔丁基醚含量偏最小二乘法 404~482 2022 [27] 表 2 不同分子光谱技术用于油品分析的技术特点
Table 2. The technical characteristics of different molecular spectrometry technology for oil analysis
近红外光谱 中红外光谱 紫外-可见光谱 拉曼光谱 核磁共振波谱 机理 含氢化学键振动的
倍频和组合频信息化学键振动
的基频信息产生于物质分子的
价电子和分子轨道上的
电子在电子能级的跃迁光与物质作用产生
的分布在瑞利散射光
两侧的非弹性光散射效应在高磁场环境下,
原子核对射频
辐射的吸收现象检测范围 含氢基团化合物 油品中几乎所有
的有机化合物含有不饱和官能团
或者共轭体系的
有机化合物烃类、醇类、醚类
及其他化合物含氢基团化合物 建模特点 油品物化性质及红
外谱图,样本数量多,
建模时间较短油品物化性质及
红外谱图,样本数量多,
建模时间较短油品物化性质及紫
外可见光谱图,样本数
量多,建模时间较长需要数量充足且具
有代表性的样品拉
曼谱图及物化性质,
建模时间较长需要大量样品数
据,建模时间长分析速度 快 快 较快 较快 较快 -
[1] HONG F W, CHIA K S. A review on recent near infrared spectroscopic measurement setups and their challenges[J]. Measurement, 2021, 171: 108732. doi: 10.1016/j.measurement.2020.108732 [2] OZAKI Y. Infrared Spectroscopy-Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy[J]. Analytical Sciences, 2021, 37(9): 1193-1212. doi: 10.2116/analsci.20R008 [3] MORO M K, DOS SANTOS F D, FOLLI G S, et al. A review of chemometrics models to predict crude oil properties from nuclear magnetic resonance and infrared spectroscopy[J]. Fuel, 2021, 303: 121283. doi: 10.1016/j.fuel.2021.121283 [4] WANG H, CHU X, CHEN P, et al. Partial least squares regression residual extreme learning machine (PLSRR-ELM) calibration algorithm applied in fast determination of gasoline octane number with near-infrared spectroscopy[J]. Fuel, 2022, 309: 122224. doi: 10.1016/j.fuel.2021.122224 [5] YUN Y H, LI H D, DENG B C, et al. An overview of variable selection methods in multivariate analysis of near-infrared spectra[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 102-115. doi: 10.1016/j.trac.2019.01.018 [6] KELLY J J, BARLOW C H, JINGUJI T M, et al. Prediction of gasoline octane numbers from near-infrared spectral features in the range 660~1215 nm[J]. Analytical Chemistry, 1989, 61(4): 313-320. doi: 10.1021/ac00179a007 [7] HONG S Y, WANG Y Z, CHEN A, et al. Rapid assessment of gasoline quality by near-infrared (NIR) deep learning model combined with fractional derivative pretreatment[J]. Analytical Letters, 2021, 55(11): 1745-1756. [8] LEE Y, CHUNG H E, KIM N. Spectral range optimization for the near-infrared quantitative analysis of petrochemical and petroleum products: Naphtha and gasoline[J]. Appl Spectrosc, 2006, 60(8): 892-897. doi: 10.1366/000370206778062219 [9] ZHAN B S, YANG J G, LIU X M, et al. Research on rapid determination of diesel cetane with near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(6): 1749-1753. [10] XU J S, ZHANG J, YANG D J. Determination of Diesel Group Composition by Near Infrared Spectroscopy[J]. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2013, 35(1): 180-187. [11] ZHANG J, XU J S, CUI Y, et al. Determination of diesel cetane number by near infrared spectroscopy[J]. Journal of The Chemical Society of Pakistan, 2013, 35(2): 369-371. [12] LI K, ZHANG C, DU B, et al. Selection of the Effective characteristic spectra based on the chemical structure and its application in rapid analysis of ethanol content in gasoline[J]. ACS Omega, 2022, 7: 20291-20297. doi: 10.1021/acsomega.2c02282 [13] LI M G, YAN C H, XUE J, et al. Rapid quantitative analysis of methanol content in methanol gasoline by near infrared spectroscopy coupled with wavelet transform-random forest[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1995-2003. [14] FERNANDES D D S, GOMES A A, DA COSTA G B, et al. Determination of biodiesel content in biodiesel/diesel blends using NIR and visible spectroscopy with variable selection[J]. Talanta, 2011, 87: 30-34. doi: 10.1016/j.talanta.2011.09.025 [15] LIU S, WANG S, HU C, et al. Determination of alcohols-diesel oil by near infrared spectroscopy based on gramian angular field image coding and deep learning[J]. Fuel, 2022, 309: 122121. doi: 10.1016/j.fuel.2021.122121 [16] PALOU A, MIRO A, BLANCO M, et al. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy[J]. Spectrochimica Acta part A-Molecular and Biomolecular Spectroscopy, 2017, 180: 119-126. doi: 10.1016/j.saa.2017.03.008 [17] WANG S T, LIU S Y, YUAN Y Y, et al. Simultaneous detection of different properties of diesel fuel by near infrared spectroscopy and chemometrics[J]. Infrared Physics & Technology, 2020, 104: 103111. [18] LITANI-BARZILAI I, SELA I, BULATOV V, et al. On-line remote prediction of gasoline properties by combined optical methods[J]. Analytica Chimica Acta, 1997, 339(1): 193-199. [19] FEL CIO C C, BR S L P, LOPES J A, et al. Comparison of PLS algorithms in gasoline and gas oil parameter monitoring with MIR and NIR[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 78(1): 74-80. [20] BAPTISTA P, FELIZARDO P, MENEZES J C, et al. Multivariate near infrared spectroscopy models for predicting the methyl esters content in biodiesel[J]. Analytica Chimica Acta, 2008, 607(2): 153-159. doi: 10.1016/j.aca.2007.11.044 [21] BALABIN R M, SMIRNOV S V. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data[J]. Analytica Chimica Acta, 2011, 692(1-2): 63-72. doi: 10.1016/j.aca.2011.03.006 [22] BALABIN R M, SAFIEVA R Z. Near-infrared (NIR) spectroscopy for biodiesel analysis: fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum[J]. Energy & Fuels, 2011, 25(5): 2373-2382. [23] RONG H T, SONG C F, YUAN H F, et al. Rapid quantitative analysis of content of the additive in gasoline for motor vehicles by near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2757-2760. [24] CORONA F, ZHU Z X, DE SOUZA A H, et al. Supervised distance preserving projections: applications in the quantitative analysis of diesel fuels and light cycle oils from NIR spectra[J]. Journal of Process Control, 2015, 30: 10-21. doi: 10.1016/j.jprocont.2014.11.005 [25] LEAL A L, SILVA A M S, RIBEIRO J C, et al. Using spectroscopy and support vector regression to predict gasoline characteristics: A comparison of H-1 NMR and NIR[J]. Energy & Fuels, 2020, 34(10): 12173-12181. [26] MISHRA P, MARINI F, BIANCOLILLO A, et al. Improved prediction of fuel properties with near-infrared spectroscopy using a complementary sequential fusion of scatter correction techniques[J]. Talanta, 2021, 223: 121693. doi: 10.1016/j.talanta.2020.121693 [27] LEAL A L, SILVA A M S, RIBEIRO J C, et al. Data driven models exploring the combination of NIR and H-1 NMR spectroscopies in the determination of gasoline properties[J]. Microchemical Journal, 2022, 175: 107217. doi: 10.1016/j.microc.2022.107217 [28] BALABIN R M, SAFIEVA R Z, LOMAKINA E I. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques[J]. Analytica Chimica Acta, 2010, 671(1): 27-35. [29] BALABIN R M, SAFIEVA R Z. Gasoline classification by source and type based on near infrared (NIR) spectroscopy data[J]. Fuel, 2008, 87(7): 1096-1101. doi: 10.1016/j.fuel.2007.07.018 [30] MABOOD F, GILANI S A, ALBROUMI M, et al. Detection and estimation of Super premium 95 gasoline adulteration with Premium 91 gasoline using new NIR spectroscopy combined with multivariate methods[J]. Fuel, 2017, 197: 388-396. doi: 10.1016/j.fuel.2017.02.041 [31] OUYANG A G, LIU J. Classification and determination of alcohol in gasoline using NIR spectroscopy and the successive projections algorithm for variable selection [J]. Measurement Science and Technology 2013, 24(2): 25502. [32] MENDES G, BARBEIRA P J S. Detection and quantification of adulterants in gasoline using distillation curves and multivariate methods[J]. Fuel, 2013, 112: 163-171. doi: 10.1016/j.fuel.2013.04.077 [33] KANYATHARE B, ASAMOAH B, PEIPONEN K E. Imaginary optical constants in near-infrared (NIR) spectral range for the separation and discrimination of adulterated diesel oil binary mixtures[J]. Optical Review, 2019, 26(1): 85-94. doi: 10.1007/s10043-018-0481-9 [34] ALEME H G, CORGOZINHO C N C, BARBEIRA P J S. Diesel oil discrimination by origin and type using physicochemical properties and multivariate analysis[J]. Fuel, 2010, 89(11): 3151-3156. doi: 10.1016/j.fuel.2010.05.010 [35] LIU Z, LUO N N, SHI J L, et al. Quantitative analysis of fuel blends based on raman and near infrared absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1889-1894. [36] ROCHA W F C, VAZ B G, SARMANHO G F, et al. Chemometric techniques applied for classification and quantification of binary biodiesel/diesel blends[J]. Analytical Letters, 2012, 45(16): 2398-2411. doi: 10.1080/00032719.2012.686135 [37] VERAS G, GOMES A D, DA SILVA A C, et al. Classification of biodiesel using NIR spectrometry and multivariate techniques[J]. Talanta, 2010, 83(2): 565-568. doi: 10.1016/j.talanta.2010.09.060 [38] TAN A L, BI W H. Identification of spilled oils by NIR spectroscopy technology based on KPCA and LSSVM [C]. SPIE Proceedings. Beijing: International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, 2011: 81933k1-81933k6. [39] TAN A L, BI W H. Quantitative analysis model of multi-component complex oil spill source based on near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3203-3207. [40] TAN A L, BI W H, ZHAO Y. Identification of spilled oil by NIR spectroscopy technology based on sparse nonnegative matrix factorization and support vector machine[J]. Spectroscopy and Spectral Analysis, 2011, 31(5): 1250-1253. [41] FLUMIGNAN D L, SEQUINEL R, HATANAKA R R, et al. Carbon nuclear magnetic resonance spectroscopic profiles coupled to partial least-squares multivariate regression for prediction of several physicochemical parameters of Brazilian commercial gasoline[J]. Energy & Fuels, 2012, 26(9): 5711-5718. [42] VALENTIN ORTEGA C, ANDREAS W, WERNER S, et al. Spectral monitoring of toluene and ethanol in gasoline blends using Fourier-Transform Raman spectroscopy [C]. SPIE Proceedings. Munich: Optical Measurement Systems for Industrial Inspection VIII, 2013: 8788341-8788348. [43] VOIGT M, LEGNER R, HAEFNER S, et al. Using fieldable spectrometers and chemometric methods to determine RON of gasoline from petrol stations: A comparison of low-field 1H NMR@80 MHz, handheld RAMAN and benchtop NIR[J]. Fuel, 2019, 236: 829-835. doi: 10.1016/j.fuel.2018.09.006 [44] LI Y, ZHANG J Y, WANG Y Z. FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng[J]. Analytical and Bioanalytical Chemistry, 2018, 410(1): 91-103. doi: 10.1007/s00216-017-0692-0 [45] GAYDOU V, KISTER J, DUPUY N. Evaluation of multiblock NIR/MIR PLS predictive models to detect adulteration of diesel/biodiesel blends by vegetal oil[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 106(2): 190-197. doi: 10.1016/j.chemolab.2010.05.002 [46] ZHOU K P, BI W H, XING Y H, et al. Multi spectral detection of ethanol content in gasoline based on SiPLS feature extraction and information fusion[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 429-434. [47] CHEN H K, ZHANG Y J, QI H B, et al. Detection of ethanol content in ethanol diesel based on PLS and multispectral method[J]. Optik, 2019, 195: 162861. doi: 10.1016/j.ijleo.2019.05.067 [48] LI M G, XUE J, DU Y, et al. Data fusion of raman and near-infrared spectroscopies for the rapid quantitative analysis of methanol content in methanol-gasoline[J]. Energy & Fuels, 2019, 33(12): 12286-12294. [49] LEGNER R, VOIGT M, WIRTZ A, et al. Using compact proton nuclear magnetic resonance at 80 MHz and vibrational spectroscopies and data fusion for research octane number and gasoline additive determination[J]. Energy & Fuels, 2020, 34(1): 103-110. [50] GONZAGA F B, PASQUINI C. A low cost short wave near infrared spectrophotometer: Application for determination of quality parameters of diesel fuel[J]. Analytica Chimica Acta, 2010, 670(1): 92-97. [51] WU J, DU Z H, LIU J, et al. Research on shortwave NIR spectroscopy and its application to in situ flammable liquid detection[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2087-2089. [52] CORREIA R M, DOMINGOS E, CAO V M, et al. Portable near infrared spectroscopy applied to fuel quality control[J]. Talanta, 2018, 176: 26-33. doi: 10.1016/j.talanta.2017.07.094 [53] BROUILLETTE C, SMITH W, SHENDE C, et al. Analysis of twenty-two performance properties of diesel, gasoline, and jet fuels using a field-portable near-infrared (NIR) analyzer[J]. Appl Spectrosc, 2016, 70(5): 746-755. doi: 10.1177/0003702816638279 [54] PAIVA E M, RIBESSI R L, ROHWEDDER J J R. Near-infrared spectra of liquid and gas samples by diffuse reflectance employing benchtop and handheld spectrophotometers[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 264: 120302. doi: 10.1016/j.saa.2021.120302 [55] WAN S K, LU B, ZHANG H M, et al. Quick measurement method of condensation point of diesel based on temperature-compensation model[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3111-31116.