留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体光谱计量技术研究进展

郭瑞民

郭瑞民. 气体光谱计量技术研究进展[J]. 计量科学与技术,2022, 66(10): 52-56 doi: 10.12338/j.issn.2096-9015.2022.0145
引用本文: 郭瑞民. 气体光谱计量技术研究进展[J]. 计量科学与技术,2022, 66(10): 52-56 doi: 10.12338/j.issn.2096-9015.2022.0145
GUO Ruimin. Research Progress of Gas Spectroscopy Technology[J]. Metrology Science and Technology, 2022, 66(10): 52-56. doi: 10.12338/j.issn.2096-9015.2022.0145
Citation: GUO Ruimin. Research Progress of Gas Spectroscopy Technology[J]. Metrology Science and Technology, 2022, 66(10): 52-56. doi: 10.12338/j.issn.2096-9015.2022.0145

气体光谱计量技术研究进展

doi: 10.12338/j.issn.2096-9015.2022.0145
基金项目: 中国计量科学研究院基本科研业务费项目(28-AKYZD2205-2)。
详细信息
    作者简介:

    郭瑞民(1976-),中国计量科学研究院副研究员,研究方向:气体计量、精密光谱、硅基光电子等,邮箱:guorm@nim.ac.cn

Research Progress of Gas Spectroscopy Technology

  • 摘要: 采用光谱技术进行气体计量,是将气体量值溯源到分子跃迁线强度上。本文介绍了中国计量科学研究院在气体光谱计量技术的最新研究进展,其研制的光腔衰荡光谱装置采用了腔长稳定技术、Pound-Drever-Hall锁频技术、温度控制技术和光频梳技术等,衰荡光腔3小时温度变化不超过5 mK,1小时真空泄露不超过0.013 Pa。利用研制的实验装置测量了CO2分子的吸收谱线,分析并给出了跃迁线强度不确定度来源,评估的相对标准不确定度约为0.08%。
  • 图  1  实验系统光电示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  衰荡光腔3小时温度变化趋势

    Figure  2.  3-hour temperature variation trend of ring-down optical cavity

    图  3  实验测量的CO2$ \left(30012\right)\leftarrow \left(00001\right) $谱带P 34e谱线与拟合残差

    Figure  3.  Experimentally measured P 34e transition of CO2 $ \left(30012\right)\leftarrow \left(00001\right) $ band spectral line and fitted residual

    表  1  线强度不确定度评估

    Table  1.   Uncertainty evaluation for the line intensity

    A类相对不确定度(%)
    $ A/p $拟合~0.036
    谱线面积/压强拟合~0.032
    B类相对不确定度(%)
    铷钟准确度 2.89×10−9
    铷钟老化率 2.89×10−8
    衰荡光腔稳定性 3.04×10−8
    PDH锁频 1.19×10−10
    自由波谱范围测量 3.05×10−12
    压强 0.04
    温度 0.002
    气体标准物质浓度 0.04
    相对合成标准不确定度(%)~0.08
    下载: 导出CSV
  • [1] Fleisher A J, Adkins E M, Reed Z D, et al. Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity[J]. Physical Review Letters, 2019, 123(4): 43001. doi: 10.1103/PhysRevLett.123.043001
    [2] Nwaboh J A, Werhahn O, Ebert V. H2O Collisional Broadening Coefficients at 1.37 µm and Their Temperature Dependence: A Metrology Approach[J]. Applied Sciences, 2021, 11(12): 5341. doi: 10.3390/app11125341
    [3] Kim Y, Lim J S. Spectral Line Shape Analysis Using Hartmann-Tran Profile for Tunable Diode Laser Absorption Spectroscopy of Water Vapor at 1.39 μm[J]. Bulletin of the Korean Chemical Society, 2020, 41(4): 418-423. doi: 10.1002/bkcs.11985
    [4] Curtis E A, Black N C G, Barwood G P. Noise-Immune, Cavity-Enhanced, Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) for Trace Gas Detection[C]. Conference on Lasers and Electro-Optics (CLEO). San Jose: United States Optica Publishing Group, 2020: SM1M. 6.
    [5] Persijn S. Purity Analysis of Gases Used in the Preparation of Reference Gas Standards Using a Versatile OPO-Based CRDS Spectrometer[J]. Journal of Spectroscopy, 2018, 2018(148): 1-7.
    [6] 寇潇文, 周宾, 刘训臣, 等. 腔衰荡光谱方法测量大气中痕量NH3的浓度[J]. 光学学报, 2018, 38(11): 361-370.
    [7] Ma G, He Y, Chen B, et al. Quasi-Simultaneous Sensitive Detection of Two Gas Species by Cavity-Ringdown Spectroscopy with Two Lasers[J]. Sensors, 2021, 21(22): 7622. doi: 10.3390/s21227622
    [8] Zhao G, Hausmaninger T, Ma W, et al. Shot-noise-limited Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry[J]. Optics Letters, 2018, 43(4): 715-718. doi: 10.1364/OL.43.000715
    [9] Tan Y, Xu Y R, Hua T P, et al. Cavity-enhanced saturated absorption spectroscopy of the (30012) − (00001) band of 12C16O2[J]. The Journal of Chemical Physics, 2022, 156(4): 44201. doi: 10.1063/5.0074713
    [10] Lin H, Yang L, Feng X J, et al. Discovery of New Lines in the R9 Multiplet of the 2v3 Band of 12CH4[J]. Physical Review Letters, 2019, 122(1): 13002.1-13002.4.
    [11] 曹珂, 张桂春, 郭瑞民, 等. 基于光腔衰荡光谱的气体成份量测量技术[J]. 计量技术, 2017(8): 7-11.
    [12] 董贺伟, 郭瑞民, 崔文超, 等. 基于折叠腔的光腔衰荡光谱技术研究[J]. 中国激光, 2020, 47(3): 291-297.
    [13] Guo R M, Teng J H, Cao K, et al. Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters[J]. Optics Express, 2019, 27(22): 31850-31863. doi: 10.1364/OE.27.031850
    [14] 曹珂, 梁超群, 郭瑞民, 等. 衰荡光腔温度控制研究[J]. 计量学报, 2018, 39(3): 431-435. doi: 10.3969/j.issn.1000-1158.2018.03.29
    [15] 苏婉, 郭瑞民, 邢素霞, 等. 高稳定性及均匀性光腔温度控制研究[J]. 计量技术, 2018(10): 10-12,42.
    [16] 邢素霞, 曹宇, 郭瑞民, 等. 基于有限元的衰荡光腔内温度分布仿真[J]. 计算机仿真, 2021, 38(1): 412-415.
    [17] 崔文超, 郭瑞民, 王德发, 等. 分布反馈激光器温度与电流控制研究[J]. 激光技术, 2019, 43(4): 437-441. doi: 10.7510/jgjs.issn.1001-3806.2019.04.001
    [18] 邢素霞, 王睿, 郭瑞民, 等. 蝶形半导体激光器恒流驱动设计与实现[J]. 激光与红外, 2019, 49(5): 553-558. doi: 10.3969/j.issn.1001-5078.2019.05.007
    [19] 邢素霞, 潘子妍, 王睿, 等. 高精度半导体激光器驱动控制系统设计[J]. 电子测量技术, 2020, 43(17): 174-180.
    [20] 李东, 崔文超, 郭瑞民, 等. 基于FPGA的电压信号采集卡研究[J]. 仪表技术与传感器, 2021(6): 123-126.
    [21] 邢素霞, 陈思, 郭瑞民, 等. 基于光腔衰荡光谱法的气体分子光谱吸收线型拟合算法研究[J]. 激光与光电子学进展, 2019, 56(19): 299-305.
    [22] Li D, Guo R M, Dong H W. Spectral line-shape analysis of CO2 transition using Hartmann-Tran profile and its asymptotic limits[J]. Journal of Molecular Spectroscopy, 2021, 379: 111480. doi: 10.1016/j.jms.2021.111480
    [23] Guo R M, Teng J H, Dong H W, et al. Line parameters of the P-branch of (30012) ← (00001) 12C16O2 band measured by comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 264: 107555. doi: 10.1016/j.jqsrt.2021.107555
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  94
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 录用日期:  2022-08-04
  • 修回日期:  2022-08-04
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2022-10-18

目录

    /

    返回文章
    返回