Analysis of Elements Content of Cu(In,Ga)Se2 Thin Films by ICP-OES/ICP-MS
-
摘要: 铜铟镓硒(CIGS, Cu(In,Ga)Se2)薄膜太阳能电池转换效率提高的关键,在于CIGS吸收层的元素含量及元素深度分布的有效控制,对元素含量的准确测量是制备和控制工艺中的基础。采用磁控溅射和三步热蒸镀方法模拟制备了Mo/CIGS薄膜,作为铜铟镓硒薄膜太阳能电池材料元素含量测量的样品,开展了电感耦合等离子体发射光谱(ICP-OES)和电感耦合等离子体质谱(ICP-MS)方法准确测定CIGS元素含量的方法研究。结果表明,建立的CIGS前处理方法及ICP-OES、ICP-MS测试方法准确可靠,两种方法测量结果一致,测试方法的相对不确定度在0.8%~1.3%之间,能够实现CIGS样品的准确测量,进而为基于表面分析方法对CIGS的深度剖析提供校正标准,能满足产业中对铜铟镓硒薄膜深度元素剖析的准确计量需求。
-
关键词:
- 铜铟镓硒薄膜 /
- 元素含量 /
- 电感耦合等离子体发射光谱 /
- 电感耦合等离子体质谱 /
- 不确定度
Abstract: The key to improving the conversion efficiency of copper indium gallium selenide (CIGS, Cu(In,Ga)Se2) thin film solar cells lie in the effective control of elemental content and elemental depth distribution of CIGS absorber layer, and the accurate measurement of elemental content is the basis in the preparation and control process. In this paper, Mo/CIGS thin films were simulatively prepared by magnetron sputtering and three-step thermal evaporation method as samples for elemental content measurement of CIGS thin film solar cell materials, and the study on the accurate determination of CIGS elemental content by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) methods were carried out. It is showed that the pretreatment method and ICP-OES and ICP-MS measurements were accurate and reliable, and the measurement results of the two methods were consistent, with the relative uncertainties of the test methods ranging from 0.8% to 1.3%, which can meet the needs of the industry for accurate measurement of the elemental analysis of CIGS thin films.-
Key words:
- CIGS thin film /
- element content /
- ICP-OES /
- ICP-MS /
- uncertainty
-
表 1 实验试剂
Table 1. Experimental reagent
名称 级别/标准号 浓度 生产厂家 Cu单元素标准溶液 NIST 3114 (10005 ± 24) ppm NIST In单元素标准溶液 NIST 3124a (10009 ± 23) ppm NIST Ga单元素标准溶液 NIST 3119a (9996 ± 18) ppm NIST Se单元素标准溶液 NIST 3119 (10042 ± 51) ppm NIST Sc单元素标准溶液 NIST 3148 (9969 ± 30) ppm NIST Rh单元素标准溶液 NIST 3144 (10220 ± 36) ppm NIST 浓硝酸 优级纯 65%~68 % 北化精细化学品公司 调谐液 — 1 μg/L 美国赛默飞公司 表 2 Ga元素在不同波长下的信号强度
Table 2. Signal intensity of Ga at different wavelengths
浓度点(ppm) Ga元素分析谱线信号强度(cps) 287.4 nm 294.3nm 417.2nm 0 −13.78 9.995 15.15 0.5 966.1 1396.0 6959.0 1 1953.0 2767.0 13870 3 5918 8284 41690 5 9790 13610 68800 6 11760 16310 82510 线性相关系数 0.99999 0.99997 0.99999 表 3 In元素在不同波长下的信号强度
Table 3. Signal intensity of In at different wavelengths
浓度点(ppm) In元素分析谱线信号强度 (cps) 230.6 nm 325.6 nm 0 7.480 −43.25 0.5 335.0 988.5 1 661.3 1997 3 1975 6093 5 3267 10100 6 3916 12140 线性相关系数 0.9999 0.99999 表 4 CIGS四种元素加标回收率
Table 4. Recovery rates of elements of CIGS
元素 本底值/mg 加入值/mg 测定值/mg 回收率/% Cu 0.2102 0.2281 0.4486 104.6 In 0.2685 0.2665 0.5321 98.9 Ga 0.08960 0.09192 0.1844 103.1 Se 0.5658 0.5668 1.1264 98.9 表 5 Cu元素标准曲线结果
Table 5. Result of standard curve of Cu
标准曲线点序号 质量浓度/ppm 信号强度/cps 1 0 159 2 0.5 10366 3 1 20513 4 3 60793 5 5 101570 6 6 120465 表 6 Cu、In、Ga、Se质量浓度的相对不确定度
Table 6. Relative uncertainty of mass concentration of Cu, In, Ga and Se
元素 $ {u}_{1\mathrm{r}} $(%) $ {u}_{2\mathrm{r}} $(%) $ {u}_{3\mathrm{r}} $(%) $ {u}_{\mathrm{r}} $(%) Cu 0.58 0.67 0.33 0.9 In 0.57 0.41 0.33 0.8 Ga 0.54 1.17 0.33 1.3 Se 0.67 0.28 0.33 0.8 -
[1] Pan G T, Lai M H, Juang R C, et al. The preparation and characterization of Ga-doped CuInS2 films with chemical bath deposition[J]. Solar Energy Materials and Solar Cells, 2010, 94: 1790-1796. doi: 10.1016/j.solmat.2010.05.047 [2] Pak S J, Kim J H. Structural analysis of Cu(In, Ga)Se2 films fabricated by using sputtering and post-selenization[J]. Current Applied Physics, 2013, 13(6): 1046-1049. doi: 10.1016/j.cap.2013.02.008 [3] 曲晶晶, 张林睿, 宋雪梅, 等. 铜铟镓硒基薄膜太阳电池的研究进展[J]. 稀有金属, 2020, 44(3): 313-327. doi: 10.13373/j.cnki.cjrm.XY18090030 [4] 王波, 文崇斌, 高杰, 等. CIGS薄膜制备工艺研究进展[J]. 广东化工, 2018, 45(17): 115-117. doi: 10.3969/j.issn.1007-1865.2018.17.055 [5] 宋斌斌, 于涛, 张传升, 等. Mo背电极对CIGS吸收层成分与结构的影响[J]. 太阳能学报, 2019, 40(5): 1298-1303. [6] 张俊敏, 高泽冉, 赵蔚, 等. Mo背电极对CIGS吸收层生长特性的影响[J]. 化工设计通讯, 2020, 46(2): 239-240. doi: 10.3969/j.issn.1003-6490.2020.02.159 [7] Jang J S, Hwang H H, Kang H J, et al. Accurate quantification of Cu(In, Ga)Se2 films by depth profiling analysis[J]. Applied Surface Science, 2013, 282: 777-781. doi: 10.1016/j.apsusc.2013.06.052 [8] Jang J S, Hwang H H, Kang H J, et al. Quantitative analysis of Cu(In, Ga)Se2 thin films by secondary ion mass spectrometry using a total number counting method[J]. Metrologia, 2012, 49: 522-529. doi: 10.1088/0026-1394/49/4/522 [9] Streeck C, Brunken S, Gerlach M, et al. Grazing-incidence x-ray fluorescence analysis for non-destructive determination of In and Ga depth profiles in Cu(In, Ga)Se2 absorber films[J]. Applied Physics Letters, 2013, 103(11): 247-863. [10] 王梅玲, 王海, 高思田, 等. Cu(In, Ga)Se2 薄膜组成的XPS准确定量分析[J]. 人工晶体学报, 2015, 44.(S): 61-65. [11] 王梅玲, 王海, 高思田, 等. Cu(In, Ga)Se2 薄膜组成表面分析准确测量国际关键比对[J]. 分析测试学报, 2015, 34(12): 1408-1413. doi: 10.3969/j.issn.1004-4957.2015.12.014 [12] 谭立志, 陈欣蕊, 王星. ICP-OES快速测定CIGS薄膜中主体及掺杂元素[J]. 电源技术, 2018, 42(2): 525-526. doi: 10.3969/j.issn.1002-087X.2018.04.018 [13] 陈英伟, 邵玲. 球磨参数对铜铟镓硒(CIGS)靶材粉料的影响[J]. 粉末冶金工业, 2022, 32(2): 110-113. doi: 10.13228/j.boyuan.issn1006-6543.20210042 [14] 董丽丽, 刘世明, 修俊山. 基于磁控溅射技术的铜铟镓硒纳米薄膜的LIBS定量分析方法研究[J]. 激光与光电子学进展, 2020, 57(23): 379-385. [15] 丁苏莹, 吴子华, 谢华清, 等. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(S2): 1-7. [16] 赵笑昆, 李博研, 张增光, 等. 铜铟镓硒薄膜太阳能电池三步共蒸发工艺精细调控[C]. 北京: 第八届新型太阳能材料科学与技术学术研讨会论文集, 2021. [17] 刘芳芳, 何青, 周志强, 等. Ga源温度对共蒸发三步法制备Cu(In, Ga)Se2太阳电池的影响[J]. 人工晶体学报, 2014, 43(6): 1381-1386. doi: 10.3969/j.issn.1000-985X.2014.06.014 [18] 王梅玲, 王海, 张贵仁, 等. 表面张力仪示值误差的测量不确定度评定[J]. 计量科学与技术, 2021, 65(10): 30-34. doi: 10.12338/j.issn.2096-9015.2020.0233 [19] 倪育才. 实用测量不确定度评定 [M]. 第 4 版. 北京: 中国质检出版社, 2014: 97-119. [20] 任丹华, 张艾蕊, 范冰奇, 等. 模拟汽油中痕量磷元素的ICP-OES和ICP-MS方法测定[J]. 化学试剂, 2020, 42(5): 527-532.