Study on Absolute Measurement Method of Fluorescence Quantum Efficiency
-
摘要: 荧光量子效率是荧光材料发射的光子数与吸收的光子数之比,用于评价荧光材料的发光性能。针对在标准物质研制中用绝对法测量荧光量子效率存在的问题,本文研究了四通光比色皿宽波段配套一致性检验方法,消除了比色皿入射面透射比不一致对荧光量子效率测量的影响;研究了分段采谱的测量方法,消除了激发光对发射波段的影响,确保了发射波段积分的准确性;研究了比色皿中溶液蒸发对荧光量子效率的影响,对比色皿密封能够排除在荧光量子效率测量中因体积和浓度波动带来的影响。这些研究为荧光量子效率绝对法准确测量提供指导。Abstract: Fluorescence quantum efficiency is the ratio of the number of photons emitted by fluorescent materials to the number of photons absorbed, which is used to evaluate the luminescence performance of fluorescent materials. In this paper, aiming at the problems of fluorescence quantum efficiency measurement by the absolute method in reference materials preparation, we studied the four-pass cuvette wide-band matching consistency test method, which eliminates the influence of inconsistent transmission ratio of cuvette incident surface on the measurement of fluorescence quantum efficiency. The measurement method of segmented spectrum acquisition was studied to eliminate the influence of excitation on the emission band and ensure the accuracy of emission band integration. The effect of solvent evaporation in the cuvette on fluorescence quantum efficiency was studied. The sealing of the cuvette can eliminate the influence of volume and concentration fluctuations in the measurement of fluorescence quantum efficiency. These studies provide guidance for the accurate measurement of fluorescence quantum efficiency by the absolute method.
-
表 1 不同体积硫酸奎宁溶液的荧光量子效率
Table 1. Fluorescence quantum efficiency of different volumes of quinine sulfate solutions
体积(mL) 荧光量子效率(%) 2.00 81.1 2.83 55.1 3.66 56.6 表 2 比色皿密封后不同时间测得的硫酸奎宁溶液的荧光量子效率
Table 2. Fluorescence quantum efficiencies of quinine sulfate solution measured at different times after the cuvettes were sealed
时间(月) 荧光量子效率(%) 0 56.0 9 55.7 -
[1] RURACK K. Fluorescence Quantum Yields: Methods of Determination and Standards[J]. Springer Series Fluorescence, 2008, 5: 101-145. [2] CROSBY G A, DEMAS J N. Measurement of photoluminescence quantum yields[J]. Journal of Physical Chemistry, 1971, 75(8): 31-35. [3] SUZUKI K, KOBAYASHI A, KANEKO S, et al. Reevaluation of absolute luminescence quantum yields of standard solutions and a back-thinned CDD detector[J]. Physical Chemistry Chemical Physics, 2009, 11(42): 9850-9860. doi: 10.1039/b912178a [4] W RTH C, LOCHMANN C, SPIELES M, et al. Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions[J]. Applied Spectroscopy, 2010, 64(7): 733-741. doi: 10.1366/000370210791666390 [5] WURTH C, GRABOLLE M, PAULI J, et al. Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields[J]. Analytical Chemistry, 2011, 83(9): 3431-3439. doi: 10.1021/ac2000303 [6] W RTH C, PAULI J, LOCHMANN C, et al. Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared[J]. Analytical Chemistry, 2012, 84(3): 1345-1352. doi: 10.1021/ac2021954 [7] MAKOWIECKI J, MARTYNSKI T. Absolute photoluminescence quantum yield of perylene dye ultra-thin films[J]. Organic Electronics, 2014, 15(10): 2395-2399. doi: 10.1016/j.orgel.2014.06.028 [8] 李建潮, 李征, 李坚, 等. 玻璃比色皿: GB/T 26791-2011[S] . 北京: 中国标准出版社, 2011. [9] BROUWER, ALBERT M. Standards for photoluminescence quantum yield measurements in solution[J]. Pure & Applied Chemistry, 2011, 83(12): 2213-2228. [10] PALSSON L O, MONKMAN A P. Measurements of Solid-State Photoluminescence Quantum Yields of Films Using a Fluorimeter[J]. Advanced Materials, 2002, 14(10): 757-758. doi: 10.1002/1521-4095(20020517)14:10<757::AID-ADMA757>3.0.CO;2-Y [11] LEYRE S, COUTINO-GONZALEZ E, JOOS J J, et al. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup[J]. Review of Scientific Instruments, 2014, 85(12): 123115. doi: 10.1063/1.4903852 [12] HASEBE N, SUZUKI K, HORIUCHI H, et al. Absolute phosphorescence quantum yields of singlet molecular oxygen in solution determined using an integrating sphere instrument[J]. Analytical Chemistry, 2015, 87(4): 2360-2366. doi: 10.1021/ac5042268 [13] WEI Y, OU H. Photoluminescence Quantum Yield of Fluorescent Silicon Carbide Determined by an Integrating Sphere Setup[J]. ACS Omega, 2019, 4(13): 15488-15495. doi: 10.1021/acsomega.9b01753 [14] SUZUKI K, ENDO A, YOSHIHARA T, et al. Photophysical study of iridium complexes by absolute photoluminescence quantum yield measurements using an integrating sphere[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7415: 741504. [15] MELHUISH W H. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute[J]. Journal of Physical Chemistry B, 1961, 65(2): 229-235. doi: 10.1021/j100820a009 [16] ADAMS M J, HIGHFIELD J G, KIRKBRIGHT G F. Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry[J]. Analytical Chemistry, 1977, 49(12): 1850-1852. doi: 10.1021/ac50020a053 [17] GAIGALAS A K, WANG L. Measurement of the fluorescence quantum yield using a spectrometer with an integrating sphere detector[J]. Journal of Research of the National Institute of Standards & Technology, 2008, 113(1): 17-28. [18] WURTH C, GRABOLLE M, PAULI J, et al. Relative and absolute determination of fluorescence quantum yields of transparent samples[J]. Nature Protocols, 2013, 8(8): 1535-1550. doi: 10.1038/nprot.2013.087 [19] ISAK S J, EYRING E M. Fluorescence quantum yield of cresyl violet in methanol and water as a function of concentration[J]. Journal of Physical Chemistry, 1992, 96(4): 383-384. [20] 彭涛, 焦学诗玛, 郑丕苗, 等. 基于新型纳米材料的荧光法快速测量谷胱甘肽[J]. 计量科学与技术, 2021, 65(5): 40-45. doi: 10.12338/j.issn.2096-9015.2020.9026 [21] BINDHU C V, HARILAL S S, VARIER G K, et al. Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique[J]. Journal of Physics D Applied Physics, 1999, 29(4): 1074-1079.