留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的可见光-近红外比色测温系统与性能评估

陈金龙 姜泓宇 易方正 王东颖 刘涛 胡晓贺

陈金龙,姜泓宇,易方正,等. 改进的可见光-近红外比色测温系统与性能评估[J]. 计量科学与技术,2022, 66(11): 53-58 doi: 10.12338/j.issn.2096-9015.2022.0211
引用本文: 陈金龙,姜泓宇,易方正,等. 改进的可见光-近红外比色测温系统与性能评估[J]. 计量科学与技术,2022, 66(11): 53-58 doi: 10.12338/j.issn.2096-9015.2022.0211
CHEN Jinlong, JIANG hongyu, YI fangzheng, WANG Dongying, LIU Tao, HU Xiaohe. Improved Visible Near-Infrared Colorimetric Thermometry System and Performance Evaluation[J]. Metrology Science and Technology, 2022, 66(11): 53-58. doi: 10.12338/j.issn.2096-9015.2022.0211
Citation: CHEN Jinlong, JIANG hongyu, YI fangzheng, WANG Dongying, LIU Tao, HU Xiaohe. Improved Visible Near-Infrared Colorimetric Thermometry System and Performance Evaluation[J]. Metrology Science and Technology, 2022, 66(11): 53-58. doi: 10.12338/j.issn.2096-9015.2022.0211

改进的可见光-近红外比色测温系统与性能评估

doi: 10.12338/j.issn.2096-9015.2022.0211
基金项目: 国防科工局基础科研项目(JCKY2020208B002)。
详细信息
    作者简介:

    陈金龙(1993-),重庆大学在读博士研究生,研究方向:光电测控技术与仪器,邮箱:1070314025@qq.com

Improved Visible Near-Infrared Colorimetric Thermometry System and Performance Evaluation

  • 摘要: 可见光-近红外比色测温系统已经被广泛应用在科研和工业高温监测领域。由于系统的灰度值范围有限,现有研究通常将不同系统参数(曝光时间、光圈)下的测温带宽拼接,以扩展测温范围。然而系统两个通道的灰度值和温度的拟合曲线为指数函数,且两条曲线的增长速度相差较大,将导致系统存在测温带宽变窄、系统灵敏度的线性度差等问题。此外,现有研究对比色测温系统性能的评估和分析方法还不够完善。针对以上问题,本文改进了可见光-近红外比色测温系统,提出用衰减灰度值的方法来扩展系统的测温带宽;使用黑体炉进行标定实验后,对改进后系统和原始系统的通道灵敏度、测温带宽和系统灵敏度进行了比较分析,发现该方法将系统的测温带宽扩展了两倍以上,同时有效地提高了系统灵敏度的线性度;最后将该系统与其他系统的整体性能进行了比较,验证了系统的实用性。
  • 图  1  比色测温系统的结构原理图

    Figure  1.  Structural schematic diagram of colorimetric thermometry system

    图  2  比色测温系统的标定

    Figure  2.  Calibration of colorimetric thermometry system

    图  3  标定的系统参数

    Figure  3.  Calibration of system parameters

    图  4  系统性能评估

    Figure  4.  System performance evaluation

    图  5  比色测温系统的标准不确定度

    Figure  5.  Uncertainty of colorimetric thermometry system

    表  1  比色测温系统的标准不确定度项

    Table  1.   Uncertainty term of colorimetric thermometry system

    温度/℃8208408608809009209409609801000
    A通道方差0.300.480.570.531.892.425.357.559.759.32
    B通道方差0.510.570.700.350.470.541.011.311.61.24
    A、B通道的协方差0.0040.0090.1830.0960.2950.5720.7010.8231.1871.321
    下载: 导出CSV

    表  2  不同测温系统比较

    Table  2.   Comparison of various thermometry instruments

    系统类型波段探测器类别测温区间测温带宽相对误差标准不确定度参考文献
    比色695 nm和800 nmCMOS相机820℃~1000℃180℃0.85%~1.42%本文
    比色光电传感器1227℃~2727℃100℃3.79%[5]
    多波段RGBCCD相机190℃~265℃0.13%~2.14%[8]
    多波段450~850 nmCMOS相机600℃~1100℃$ \pm 0.75\% $[12]
    多波段RGBCCD相机1226℃~2736℃1.8%[15]
    多波长500~900 nm光谱仪1100℃~1250℃
    和1200℃~1400℃
    150/200℃2%~6%[21]
    下载: 导出CSV
  • [1] ZHANG Y Z, XIE Z H, ZHAO Z W, et al. Online surface temperature measurement of billets in secondary cooling zone end-piece based on data fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(3): 612-619. doi: 10.1109/TIM.2013.2253894
    [2] THEVENET J, SIROUX M, DESMET B, et al. Measurements of brake disc surface temperature and emissivity by two-color pyrometry[J]. Applied Thermal Engineering, 2010, 30(6-7): 753-759. doi: 10.1016/j.applthermaleng.2009.12.005
    [3] LIU G, LIU D. Direct simultaneous reconstruction for temperature and concentration profiles of soot and metal-oxide nanoparticles in nanofluid fuel flames by a CCD camera[J]. International Journal of Heat and Mass Transfer, 2018, 124: 564-575. doi: 10.1016/j.ijheatmasstransfer.2018.03.064
    [4] ZOLTAN P. Mathematical analysis of transient temperature changes in the chip root during milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 4219-4232. doi: 10.1007/s00170-017-0042-6
    [5] MONIER R. Liquid metals surface temperature fields measurements with a two-colour pyrometer[J]. Measurement, 2017, 101: 72-80. doi: 10.1016/j.measurement.2016.12.031
    [6] ZHANG Y. Development of a CCD-based pyrometer for surface temperature measurement of casting billets[J]. Measurement Science & Technology, 2017, 28(6): 65903.
    [7] ANTONIO J M, Araújo M. Multi-spectral pyrometry - a review[J]. Measurement Science & Technology, 2017, 28(8): 082002.
    [8] FU T, YANG Z, WANG L, et al. Measurement performance of an optical CCD-based pyrometer system[J]. Optics & Laser Technology, 2010, 42(4): 586-593.
    [9] ZHANG Y, ZHANG W, DONG Z, et al. Calibration and measurement performance analysis for a spectral band charge-coupled-device-based pyrometer[J]. Review of Scientific Instruments, 2020, 91(6): 064904. doi: 10.1063/1.5129758
    [10] MA B. Intensity-ratio and color-ratio thin-filament pyrometry: Uncertainties and accuracy[J]. Combustion and Flame, 2014, 161(4): 908-916. doi: 10.1016/j.combustflame.2013.10.014
    [11] ZHANG Y. Noise characterization and compensation for a charge-coupled-device-based pyrometer[J]. Review of Scientific Instruments, 2021, 92(5): 054902. doi: 10.1063/5.0046410
    [12] KELLY D L, SCARBOROUGH D E, THUROW B S, et al. A novel multi-band plenoptic pyrometer for high-temperature applications[J]. Measurement science & technology, 2021, 32(10): 105901.
    [13] ZHANG Y. Measurement performance analysis for a charge-coupled-device-based near-infrared multi-spectral pyrometer[J]. Infrared Physics & Technology, 2020, 106: 103273.
    [14] 翟洋, 沈华, 朱日宏, 等. 多光谱辐射瞬态高温测温计的研制[J]. 光谱学与光谱分析, 2010, 30(11): 3161-3165. doi: 10.3964/j.issn.1000-0593(2010)11-3161-05
    [15] JIMENEZ S. Two-color, two-dimensional pyrometers based on monochrome and color cameras for high-temperature (>1000 K) planar measurements[J]. Review of Scientific Instruments, 2020, 91(11): 114901. doi: 10.1063/5.0021784
    [16] CHRZANOWSKI K. Evaluation of commercial thermal cameras in quality systems[J]. Optical Engineering, 2002, 41(10): 2556-2567. doi: 10.1117/1.1499972
    [17] FU T, LIU J, TIAN J, et al. VIS-NIR multispectral synchronous imaging pyrometer for high-temperature measurements[J]. Review of Scientific Instruments, 2017, 88(6): 1522-1530.
    [18] HUANG Y, LONG M, CHEN D, et al. A New Wavelength Selection Criterion for Two-color Pyrometer Interfered with Participating Media[J]. Infrared Physics & Technology, 2018, 93: 136-143.
    [19] 张华, 廖宝剑, 潘际銮, 等. ICCD双色热图像温度场检测系统的波长选择[J]. 红外与毫米波学报, 1996, 35(6): 433-438.
    [20] SHU Z, YU Y. Temperature and emissivity measurements from combustion of pine wood, rice husk and fir wood using flame emission spectrum-ScienceDirect[J]. Fuel Processing Technology, 2020, 204: 106423. doi: 10.1016/j.fuproc.2020.106423
    [21] 倪育才. 实用测量不确定度评定[M]. 北京: 中国计量出版社, 2008.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  108
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-12-01

目录

    /

    返回文章
    返回