Research on High Stability Fiber Bragg Grating Wavelength Standard
-
摘要: 依据JJF 1804-2020《布拉格光纤光栅传感网络分析仪校准规范》,应使用稳定的参考标准光纤光栅对光纤光栅解调仪的波长解调示值进行校准。采用特殊设计的应力释放结构并利用智能控制算法及半导体制冷技术,实现高精度的温度控制,研制了一组高稳定的光纤光栅波长标准器。通过重复性考核并与商用光纤光栅测量比对,证明研制的光纤光栅波长标准器性能远优于校准规范要求,从而极大地提高了光纤光栅解调仪的校准不确定度。Abstract: Fiber Bragg grating (FBG) demodulators are widely used in various fields, including civil engineering, aviation, healthcare, and national defense. To comply with the Calibration Specification for Optical Fiber Bragg Grating Sensor Network Analyzers (JJF 1804-2020), it is crucial to calibrate the wavelength demodulation values of the FBG demodulator using a stable reference standard FBG. In this study, we developed a set of high stability FBG wavelength reference standards by utilizing a specially designed stress relief structure, intelligent control algorithm, and semiconductor refrigeration technology to achieve high precision temperature control. Through repeatability testing and comparison to commercial FBG measurements, we demonstrate that the performance of our developed FBG wavelength standards far exceeds the requirements of the calibration specification. Our results show that our FBG demodulator calibration procedure significantly improves the calibration uncertainty of the instrument.
-
表 1 光纤光栅传感器的主要技术指标
Table 1. Main technical specifications of fiber Bragg grating sensor
主要特性 技术指标 使用温度范围 −20℃~60℃ 温度灵敏度 ≤3 pm/℃ 安装方式 胶接 温度传感器尺寸 LW≤40 mm,DW≤15 mm,厚度不大于3 mm 光纤直径 ≤1 mm 光纤耐温 −40℃~100℃ 光纤连接器类型 FC/APC 表 2 高稳定光纤光栅标准器中心波长测试结果
Table 2. Central wavelength test results for high stability fiber Bragg grating standard
/nm 序号 标准器1 标准器2 标准器3 标准器4 标准器5 1 1531.8438 1542.0080 1547.1997 1556.6941 1563.0583 2 1531.8439 1542.0080 1547.1997 1556.6942 1563.0585 3 1531.8438 1542.0078 1547.1998 1556.6942 1563.0583 4 1531.8438 1542.0078 1547.1999 1556.6942 1563.0584 5 1531.8439 1542.0079 1547.1996 1556.6941 1563.0583 6 1531.8437 1542.0079 1547.1998 1556.6943 1563.0583 7 1531.8437 1542.0079 1547.1996 1556.6942 1563.0583 8 1531.8437 1542.0079 1547.1994 1556.6941 1563.0584 9 1531.8438 1542.0078 1547.1996 1556.6942 1563.0584 10 1531.8438 1542.0079 1547.1998 1556.6941 1563.0584 平均值 1531.8438 1542.0079 1547.1997 1556.6942 1563.0584 实验标准偏差 0.00007 0.00007 0.00014 0.00007 0.00007 表 3 常用光纤光栅标准器中心波长测试结果
Table 3. Central wavelength test results for commonly used fiber Bragg grating standards
/nm 序号 标准器1 标准器2 标准器3 标准器4 1 1535.502 1544.662 1557.526 1562.261 2 1535.508 1544.664 1557.528 1562.255 3 1535.506 1544.662 1557.523 1562.254 4 1535.502 1544.664 1557.525 1562.258 5 1535.502 1544.658 1557.525 1562.262 6 1535.502 1544.663 1557.516 1562.262 7 1535.503 1544.663 1557.525 1562.266 8 1535.504 1544.664 1557.528 1562.263 9 1535.503 1544.655 1557.530 1562.256 10 1535.507 1544.657 1557.525 1562.261 平均值 1535.504 1544.661 1557.525 1562.260 实验标准偏差 0.0023 0.0033 0.0038 0.0039 表 4 光纤光栅解调仪的校准不确定度评定
Table 4. Evaluation of calibration uncertainty for fiber Bragg grating demodulator
序号 不确定度来源 标准不
确定度概率
分布灵敏
系数不确定
度分量1 参考光纤光栅引入
的不确定度2.3 pm 正态 1 2.3 pm 2 标准光波长计的不确定度 0.3 pm 正态 1 0.3 pm 3 测量重复性引入的不确定度 0.3 pm 正态 1 0.3 pm 4 被校仪器波长分辨率
引入的不确定度0.3 pm 正态 1 0.3 pm 5 其它影响因素的不确定度 1 pm 1 0.3 pm 合成测量不确定度 2.4 pm -
[1] 吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学, 2014, 7(4): 519-531. [2] 国家市场监督管理总局. 布拉格光纤光栅传感网络分析仪校准规范: JJF 1804-2020[S]. 北京: 中国计量出版社, 2020 . [3] Yoffe G W, Krug P A, Ouellette F, et al. Passive temperature-compensating package for optical fiber gratings[J]. Applied Optics, 1995, 34(30): 6859-6861. doi: 10.1364/AO.34.006859 [4] 黄勇林, 李杰, 开桂云, 等. 光纤光栅的温度补偿[J]. 光学学报, 2003(6): 677-679. doi: 10.3321/j.issn:0253-2239.2003.06.008 [5] Dyer S D, Williams P A, Espejo R J, et al. Fundamental limits in fiber Bragg grating peak wavelength measurements[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2005, 5855: 1-6. [6] Hsu Y S, Wang L, Liu W F, et al. Temperature Compensation of Optical Fiber Bragg Grating Pressure Sensor[J]. IEEE Photonics Technology Letters, 2006, 18(7): 874-876. doi: 10.1109/LPT.2006.871832 [7] Rowe M A, Swann W C, Gilbert S L. Multiple-wavelength reference based on interleaved, sampled fiber Bragg gratings and molecular absorption[J]. Applied Optics, 2004, 43(17): 3530-3534. doi: 10.1364/AO.43.003530 [8] 郭永兴, 匡毅, 熊丽, 等. 不同封装方式的光纤光栅传感与温补特性[J]. 激光与光电子学进展, 2018, 55(11): 99-106. [9] 周锋, 李永倩, 王劭龙. 光纤布拉格光栅传感器及其封装研究进展[J]. 光通信技术, 2017, 41(11): 8-11. [10] Y Zhang, L Zhu, F Luo, et al. Comparison of Metal-Packaged and Adhesive-Packaged Fiber Bragg Grating Sensors[J]. IEEE Sensors Journal, 2016, 16(15): 5958-5963. doi: 10.1109/JSEN.2016.2577610 [11] Y Guo, L Xiong, H Liu. Research on the Durability of Metal-Packaged Fiber Bragg Grating Sensors[J]. IEEE Photonics Technology Letters, 2019, 31(7): 525-528. doi: 10.1109/LPT.2019.2900069 [12] Bessie A Ribeiro, Marcelo Martins Werneck, Regina Celia da Silva Barros Allil. Calibration and operation of a fibre Bragg grating temperature sensing system in a grid-connected hydrogenerator[J]. IET science, measurement & technology, 2013, 7(1): 59-68. [13] 庞丹丹. 新型光纤光栅传感技术研究[D]. 济南: 山东大学, 2014. [14] 何进. 基于半导体制冷技术的温度控制系统研究[D] . 天津: 中国民航大学, 2017. [15] 谢文华. 基于FLOTHERM软件的双极功率晶体管热分布研究[D]. 成都: 电子科技大学, 2010. [16] 李江澜, 石云波, 赵鹏飞, 等. TEC的高精度半导体激光器温控设计[J]. 红外与激光工程, 2014, 43(6): 1745-1749. doi: 10.3969/j.issn.1007-2276.2014.06.009 [17] 吴俊, 李长俊. 基于TEC的高精度温控系统设计[J]. 电子设计工程, 2017, 25(20): 75-79. doi: 10.3969/j.issn.1674-6236.2017.20.019 [18] S Wang, X Niu, L Zhang. Research on the Environment Temperature of 3D Printing Methacrylate based on Adaptive Fuzzy PID Algorithm[C]. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), IEEE, 2019: 264-268. [19] R Raj, P M Pathak, G Bhandari, et al. Two- and Three-Input Fuzzy PID Controller Structure of Takagi-Sugeno Type[C]. 2019 19th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2019: 1605-1609. [20] 王玉德, 韩秀庆, 韩秀勇, 等. PID参数调整仿真比较研究[J]. 电气自动化, 2011, 33(6): 1-3,6. doi: 10.3969/j.issn.1000-3886.2011.06.001 [21] 苏卫东, 任思聪, 刘升才. 温控箱数学模型的建立及其自适应PID控制[J]. 中国惯性技术学报, 1995(4): 34-38. [22] 王生成. 基于模糊控制温控系统的研究[D] . 大连: 大连理工大学, 2002. [23] 林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11, 26. [24] 崔磊, 刘佳畅, 贾亚青, 等. 小型光通量计校准方法研究[J]. 计量科学与技术, 2022, 66(1): 19-21, 31. [25] 李卓然, 李雨霄, 蒋依芹, 等. 光学测量系统信噪比优化方法研究[J]. 计量科学与技术, 2022, 66(2): 50-54.