留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨透射电子显微镜的校准方法

王芳 施玉书 周莹

王芳,施玉书,周莹. 高分辨透射电子显微镜的校准方法[J]. 计量科学与技术,2022, 66(11): 16-19 doi: 10.12338/j.issn.2096-9015.2022.0244
引用本文: 王芳,施玉书,周莹. 高分辨透射电子显微镜的校准方法[J]. 计量科学与技术,2022, 66(11): 16-19 doi: 10.12338/j.issn.2096-9015.2022.0244
WANG Fang, SHI Yushu, ZHOU Ying. Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy[J]. Metrology Science and Technology, 2022, 66(11): 16-19. doi: 10.12338/j.issn.2096-9015.2022.0244
Citation: WANG Fang, SHI Yushu, ZHOU Ying. Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy[J]. Metrology Science and Technology, 2022, 66(11): 16-19. doi: 10.12338/j.issn.2096-9015.2022.0244

高分辨透射电子显微镜的校准方法

doi: 10.12338/j.issn.2096-9015.2022.0244
基金项目: 国家重点研发计划(2020YFF0218403);中国计量科学研究院基本科研业务费项目(AKYZD2007-1)。
详细信息
    作者简介:

    王芳(1989-),中国计量科学研究院助理研究员,研究方向:纳米计量,邮箱:wangfang@nim.ac.cn

    通讯作者:

    施玉书(1982-),中国计量科学研究院副研究员,研究方向:微纳计量技术、精密仪器测量,邮箱:shiys@nim.ac.cn

Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy

  • 摘要: 透射电子显微镜作为纳米尺度的重要分析工具,其长度量值的准确性将直接影响样品的测量结果。本研究采用单晶硅晶格标准器,对高分辨透射电子显微镜的长度测量误差与长度测量重复性进行了校准,并对长度测量误差的不确定度进行评定。为说明校准方法的适用性,研究中对三台不同型号的高分辨透射电子显微镜进行了校准实验,结果显示该校准方法具有广泛的代表性,可实现透射电子显微镜的精确评价,测量量值可溯源至硅晶格常数,为纳米技术领域的精准测量提供技术保障。
  • 图  1  硅晶面间距的高分辨透射电子显微图像

    Figure  1.  HRTEM images of silicon lattice spacing

    图  2  硅晶面间距的直接法测量示例

    Figure  2.  Example of direct measurement of silicon lattice spacing

    图  3  硅晶面间距的自动化测量示例

    Figure  3.  Example of automatic measurement of silicon lattice spacing

    图  4  硅晶面间距的间接法测量示例

    Figure  4.  Example of indirect measurement of silicon lattice spacing

    表  1  放大倍率为790 k时不同型号仪器的校准结果

    Table  1.   Calibration results of different instruments at the magnification of 790 k

    仪器型号长度测量误差(%)长度测量重复性(nm)
    TECNAI G2 F201.40.01
    JEM-2100F−1.20.01
    LIBRA 200FE1.30.01
    下载: 导出CSV

    表  2  不同放大倍率对TECNAI G2 F20透射电镜的校准结果

    Table  2.   Calibration results of TEM (TECNAI G2 F20) with different magnifications

    放大倍率长度测量误差(%)长度测量重复性(nm)
    285 k1.00.01
    400 k−1.50.01
    450 k1.30.01
    690 k1.40.00
    790 k1.40.01
    下载: 导出CSV
  • [1] Williams D B, Carter C B. Transmission electron microscopy [M]. New York: Springer Science Business Media, 2009.
    [2] Ndubuisi G Orji, Ronald G Dixson, Domingo I Garcia-Gutierrez, et al. TEM calibration methods for critical dimension standards[J]. Proceedings of SPIE, 2007, 6518: 651810-651811. doi: 10.1117/12.713368
    [3] Syota Fujinaka, Yukio Sato, Ryo Teranishi, et al. Understanding of scanning-system distortions of atomic-scale scanning transmission electron microscopy images for accurate lattice parameter measurements[J]. Journal of Materials Science, 2020(55): 8123-8133.
    [4] Nathan D Burrows, Lee Penn. Cryogenic transmission electron microscopy: Aqueous suspensions of nanoscale objects[J]. Microscopy and Microanalysis, 2013, 19(6): 1542-1553. doi: 10.1017/S1431927613013354
    [5] Dai G L, Heidelmann M, K¨ubel C, et al. Reference nano-dimensional metrology by scanning transmission electron microscopy[J]. Measurement Science and Technology, 2013(24): 085001.
    [6] Dai G L, Fan Z, Heidelmann M, et al. Development and characterisation of a new line width reference material[J]. Measurement Science and Technology, 2015(26): 115006.
    [7] Dai G L, Hahm K, Bosseand H, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017(28): 065010.
    [8] Wu Z R, Cai Y N, Wang X R, et al. Amorphous Si critical dimension structures with direct Si lattice calibration[J]. Chinese Physics B, 2019(28): 030601.
    [9] Castelazo I A. Mise en pratique for the definition of the metre in the SI [R]. Versailles, France: Consultative Committee for Length, 2019.
    [10] Andrew Yacoot. Recommendations of CCL/WG-N on: Realization of the SI metre using silicon lattice parameter and x-ray interferometry for nanometre and sub-nanometre scale applications in dimensional nanometrology [R]. Versailles, France: Consultative Committee for Length, 2019.
    [11] Andrew Yacoot. Recommendations of CCL/WG-N on: Realization of SI metre using silicon lattice and transmission electron microscopy for dimensional nanometrology [R]. Versailles, France: Consultative Committee for Length, 2019.
    [12] Dai G L, Koenders L, Pohlenz F. Accurate and traceable calibration of one-dimensional gratings[J]. Measurement Science and Technology, 2005(16): 1241-1249.
    [13] Misumi I, Gonda S, Kurosawa T. Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope[J]. Measurement Science and Technology, 2003(14): 463-471.
    [14] WANG F, SHI Y S, ZHANG S, et al. Automatic measurement of silicon lattice spacings in high-resolution transmission electron microscopy images through 2D discrete Fourier transform and inverse discrete Fourier transform[J]. Nanomanufacturing and Metrology, 2022(5): 119-126.
    [15] 王芳, 施玉书, 张树, 等. 基于硅晶格常数的纳米线宽计量技术[J]. 计量科学与技术, 2022, 66(4): 13-18,47.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  378
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 录用日期:  2022-11-15
  • 修回日期:  2022-11-08
  • 网络出版日期:  2022-12-01

目录

    /

    返回文章
    返回