Research on the Calibration Methods of High-Resolution Transmission Electron Microscopy
-
摘要: 透射电子显微镜作为纳米尺度的重要分析工具,其长度量值的准确性将直接影响样品的测量结果。本研究采用单晶硅晶格标准器,对高分辨透射电子显微镜的长度测量误差与长度测量重复性进行了校准,并对长度测量误差的不确定度进行评定。为说明校准方法的适用性,研究中对三台不同型号的高分辨透射电子显微镜进行了校准实验,结果显示该校准方法具有广泛的代表性,可实现透射电子显微镜的精确评价,测量量值可溯源至硅晶格常数,为纳米技术领域的精准测量提供技术保障。
-
关键词:
- 硅晶面间距 /
- 高分辨透射电子显微镜 /
- 纳米计量 /
- 溯源性 /
- 校准
Abstract: As an important analytical tool at the nano-scale, the accuracy of the length measurement value of the transmission electron microscopy (TEM) will directly affect the measurement results of samples. In this study, the length measurement error and length measurement repeatability of the high-resolution TEM were calibrated using single-crystal silicon lattice standards, and the uncertainty of the length measurement error was evaluated. To illustrate the applicability of the calibration method, calibration experiments were conducted on three different models of high-resolution TEMs in the study. The results show that the calibration method is widely representative and can achieve an accurate evaluation of TEMs with measured quantities traceable to the silicon lattice constant, which provides technical assurance for accurate measurements in the field of nanotechnology. -
表 1 放大倍率为790 k时不同型号仪器的校准结果
Table 1. Calibration results of different instruments at the magnification of 790 k
仪器型号 长度测量误差(%) 长度测量重复性(nm) TECNAI G2 F20 1.4 0.01 JEM-2100F −1.2 0.01 LIBRA 200FE 1.3 0.01 表 2 不同放大倍率对TECNAI G2 F20透射电镜的校准结果
Table 2. Calibration results of TEM (TECNAI G2 F20) with different magnifications
放大倍率 长度测量误差(%) 长度测量重复性(nm) 285 k 1.0 0.01 400 k −1.5 0.01 450 k 1.3 0.01 690 k 1.4 0.00 790 k 1.4 0.01 -
[1] Williams D B, Carter C B. Transmission electron microscopy [M]. New York: Springer Science Business Media, 2009. [2] Ndubuisi G Orji, Ronald G Dixson, Domingo I Garcia-Gutierrez, et al. TEM calibration methods for critical dimension standards[J]. Proceedings of SPIE, 2007, 6518: 651810-651811. doi: 10.1117/12.713368 [3] Syota Fujinaka, Yukio Sato, Ryo Teranishi, et al. Understanding of scanning-system distortions of atomic-scale scanning transmission electron microscopy images for accurate lattice parameter measurements[J]. Journal of Materials Science, 2020(55): 8123-8133. [4] Nathan D Burrows, Lee Penn. Cryogenic transmission electron microscopy: Aqueous suspensions of nanoscale objects[J]. Microscopy and Microanalysis, 2013, 19(6): 1542-1553. doi: 10.1017/S1431927613013354 [5] Dai G L, Heidelmann M, K¨ubel C, et al. Reference nano-dimensional metrology by scanning transmission electron microscopy[J]. Measurement Science and Technology, 2013(24): 085001. [6] Dai G L, Fan Z, Heidelmann M, et al. Development and characterisation of a new line width reference material[J]. Measurement Science and Technology, 2015(26): 115006. [7] Dai G L, Hahm K, Bosseand H, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017(28): 065010. [8] Wu Z R, Cai Y N, Wang X R, et al. Amorphous Si critical dimension structures with direct Si lattice calibration[J]. Chinese Physics B, 2019(28): 030601. [9] Castelazo I A. Mise en pratique for the definition of the metre in the SI [R]. Versailles, France: Consultative Committee for Length, 2019. [10] Andrew Yacoot. Recommendations of CCL/WG-N on: Realization of the SI metre using silicon lattice parameter and x-ray interferometry for nanometre and sub-nanometre scale applications in dimensional nanometrology [R]. Versailles, France: Consultative Committee for Length, 2019. [11] Andrew Yacoot. Recommendations of CCL/WG-N on: Realization of SI metre using silicon lattice and transmission electron microscopy for dimensional nanometrology [R]. Versailles, France: Consultative Committee for Length, 2019. [12] Dai G L, Koenders L, Pohlenz F. Accurate and traceable calibration of one-dimensional gratings[J]. Measurement Science and Technology, 2005(16): 1241-1249. [13] Misumi I, Gonda S, Kurosawa T. Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope[J]. Measurement Science and Technology, 2003(14): 463-471. [14] WANG F, SHI Y S, ZHANG S, et al. Automatic measurement of silicon lattice spacings in high-resolution transmission electron microscopy images through 2D discrete Fourier transform and inverse discrete Fourier transform[J]. Nanomanufacturing and Metrology, 2022(5): 119-126. [15] 王芳, 施玉书, 张树, 等. 基于硅晶格常数的纳米线宽计量技术[J]. 计量科学与技术, 2022, 66(4): 13-18,47.