Study on Flue Gas Flow Measurement Method Based on S-Type Pitot Tube
-
摘要: 为了研究烟气流量实测计量方法,分析了当前主要碳排放核查方法的优劣,根据实测法烟气流量测量原理,提出利用S型皮托管测量烟气流量的方法。通过对皮托管测速原理的研究,根据速度面积法流量测量方法,提出了等面积和等距离两种积分方法,对两种积分方法中皮托管的安装位置、烟道截面测量点及其分布进行比较。为验证两种积分方法的合理性,依托实验室风洞装置对两种积分方法测得的结果进行分析比较,得出两种积分方法在低流速下偏差较大,在高流速下偏差均在0.5%左右,为实测法烟气流量的精确测量提供技术支撑。Abstract: To investigate the measurement method of flue gas flow, the advantages and disadvantages of current main carbon verification methods are analyzed. The background and significance of carbon emission research, as well as the progress of related research at home and abroad, are described. A method for measuring flue gas flow using an S-type pitot tube is proposed based on the measurement principle of flue gas flow. Two integration methods of equal area and equal distance are proposed based on the study of pitot tube velocity measurement principle and the flow measurement method of velocity area method. The installation position of the pitot tube, the measurement points of the flue section, and their distribution in the two integration methods are compared. The rationality and advantages of the two integration methods of equal area and equal distance are analyzed and compared theoretically. To verify the rationality of the two integration methods, the results measured by the two integration methods are analyzed and compared based on the laboratory wind tunnel device. It is concluded that the deviation of the two methods is large at low flow rate, and the deviation of the two integration methods is about 0.5% at high flow rate, which provides technical support for the accurate measurement of measured smoke and air flow. The study suggests that the proposed measurement method using S-type pitot tube is a reliable and effective way for measuring flue gas flow.
-
Key words:
- metrology /
- stationary emission source /
- flue gas flow /
- S-type pitot tube /
- velocity-area method
-
表 1 两种积分方法的测量点数量和位置
Table 1. Number and position of measurement points by two integration methods
等面积法测点数量及位置 等距离法测点数量及位置 测量点 单一直径测量点数及测量点位置 测量点 单一直径测量点数及测量点位置 4 6 8 10 4 6 8 10 1 0.067 0.044 0.033 0.026 1 0.167 0.125 0.100 0.083 2 0.250 0.146 0.105 0.082 2 0.333 0.250 0.200 0.167 3 0.750 0.294 0.195 0.145 3 0.667 0.375 0.300 0.250 4 0.933 0.706 0.321 0.227 4 0.833 0.625 0.400 0.333 5 0.854 0.679 0.334 5 0.750 0.600 0.417 6 0.956 0.805 0.656 6 0.875 0.700 0.583 7 0.895 0.773 7 0.800 0.667 8 0.967 0.855 8 0.900 0.750 9 0.918 9 0.833 10 0.974 10 0.917 表 2 实验中两种积分方法测量点位置
Table 2. Measurement point locations for the two integration methods in the experiment
/mm 测量点位置 1 2 3 4 5 6 测量点距径向
起点距离等面积法 17.6 58.4 117.6 282.4 341.6 382.4 等距离法 50 100 150 250 300 350 -
[1] Boden T A, Marland G, Andres R J. National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture and Gas Flaring[R]. Washington: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2015. [2] 方平, 岑超平, 唐子君, 等. 污泥焚烧大气污染物排放及其控制研究进展[J]. 环境科学与技术, 2022, 35(10): 70-80. [3] 张桂芹, 姜德超, 李曼, 等. 城市大气挥发性有机物排放源及来源分析[J]. 环境科学与技术, 2014, 35(S2): 195-200. [4] 国家发展和改革委员会. 中国化工生产企业温室气体排放核算方法及报告指南[R]. 北京: 国家发展和改革委员会, 2013. [5] 郑元刚, 武琼, 李静. 利用工业分析结果计算煤的发热量[J]. 煤质技术, 2019, 33(5): 31-73. [6] 余丽. 化工行业碳排放核查的重点分析[J]. 低碳世界, 2021(8): 33-35. doi: 10.3969/j.issn.2095-2066.2021.08.016 [7] 党世英. 运用二元线性回归计算晋华宫煤的发热量[J]. 煤质技术, 2019, 34(2): 55-57. doi: 10.3969/j.issn.1007-7677.2019.02.015 [8] 沈照人. 回归分析法在碳排放核查中测算发电企业燃煤发热量的应用[J]. 煤质技术, 2021, 36(5): 69-74. doi: 10.3969/j.issn.1007-7677.2021.05.010 [9] Thomas T, Peter G, Thomas S. Comparison of Integration Methods for Multipath Acoustic Discharge Measurements[C]. International Conference on Innovation in Hydraulic Efficiency Measurements, 2006. [10] Bruno L, Thomas S, Thomas T, et al. Optimizing the Acoustic Discharge Measurement for Rectangular Conduits[C]. International Conference on Innovation in Hydraulic Efficiency Measurements, 2019. [11] M Granovskii, I Dincer, M A Rosen. Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: Economic factors[J]. International Journal of Hydrogen Energy, 2007, 32(8): 927-931. doi: 10.1016/j.ijhydene.2006.09.029 [12] 冯真祯, 朱林, 段玖祥. 国内外烟气流速测量标准比较分析[J]. 环境监测管理与技术, 2014, 22(5): 57-62. [13] Z Liu, D Guan, W Wei, et al. Reduced Carbon Emission Estimates from Fossil Fuel Combustion and Cement Production in China[J]. Nature, 2015, 524(7565): 335-338. doi: 10.1038/nature14677 [14] 杨桦. 火电厂短直管段大型风道风量测量方法的研究[J]. 华东电力, 2006, 34(9): 33-35. doi: 10.3969/j.issn.1001-9529.2006.09.010 [15] D Wecel, T Chmielniak. Experimental and numerical investigations of the averaging Pitot tube and analysis of installation effects on the flow coefficient[J]. Flow Measurement and Instrumentation, 2008, 19: 301-306. doi: 10.1016/j.flowmeasinst.2008.03.002 [16] 莫超, 陆继东, 华玉龙. 火电厂安装烟气排放在线监测系统探讨[J]. 中国电力, 2001, 34(6): 69-70. doi: 10.3969/j.issn.1004-9649.2001.06.020 [17] Boetcher S K S, Sparrow E M. Numerical Simulation of Axisymmetric, Turbulent Buoyant Plumes - Application to Displacement Ventilation[J]. Numerical Heat Transfer Applications, 2007, 51(11): 1023-1040. doi: 10.1080/10407790601184421 [18] 环境保护部. 固定污染源烟气排放连续监测系统技术要求及检测方法: HJ 76-2017[S]. 北京: 中国环境出版社, 2017. [19] US Environmental Protection Agency. EPA Method 1 Sample and Velocity Traverses for Stationary Sources[S]. Washington: Environmental Protection Agency, 2000. [20] 国家技术监督局. 速度-面积法流量装置: JJG 835-1993[S]. 北京: 中国质检出版社, 1993. [21] 王德发, 李琪, 叶菁, 等. 气体测量中的线性拟合[J]. 计量科学与技术, 2022, 66(10): 3-9. [22] 杨有涛, 彭蕾. 钟罩式气体流量标准装置量值统一和传递的研究[J]. 计量科学与技术, 2022, 65(7): 46-50. [23] 李培晶, 崔骊水, 李春辉. 活塞式气体流量标准装置活塞缸内径测量及不确定度评估[J]. 计量学报, 2021, 42(10): 1275-1281. [24] 黎荣发, 凌光盛, 赵豪, 等. 低压大流量热式气体质量流量计分流测试方法研究[J]. 计量科学与技术, 2022, 66(8): 3-6, 12.