Synthesis of Formaldehyde-2,4-Dinitrophenylhydrazine Derivatives and its Qualitative and Quantitative Analysis
-
摘要: 醛酮类含氧挥发性有机物污染物的监测受到广泛关注和研究。针对基于高效液相色谱法测量甲醛时缺乏甲醛-2,4-二硝基苯腙标准物质的现状,开展了甲醛与2,4-二硝基苯肼衍生反应制备甲醛腙的合成方法研究以及产物甲醛腙的定性与定量分析研究。通过对反应时间、反应溶液酸度以及萃取次数等反应条件进行优化,获得了衍生反应的最优条件:反应时间为30 min、反应溶液pH值为2、萃取次数为6次。通过红外光谱法和气相色谱-质谱法对衍生产物进行了定性分析确认,采用高效液相色谱法对衍生产物进行了定量分析测定且评估了测量不确定度。结果表明:衍生制备的甲醛-2,4-二硝基苯腙与NIST标准谱库符合良好,且其纯度可达98%,不确定度优于1%,可作为标准物质研制的候选材料;建立的液相色谱法可以准确测量甲醛腙。该研究工作将为甲醛-2,4-二硝基苯腙等典型醛酮腙类标准物质的制备、定值及研制提供重要参考。Abstract: The monitoring and research of volatile oxygenated organic pollutants, including aldehydes and ketones, have garnered widespread attention. Given the existing shortage of formaldehyde-2,4-dinitrophenylhydrazone standard substances for high-performance liquid chromatography (HPLC)-based formaldehyde measurement, this study embarks on exploring the synthesis method of formaldehyde hydrazone through the derivatization reaction of formaldehyde and 2,4-dinitrophenylhydrazine. It also delves into the qualitative and quantitative analyses of the resulting product. By optimizing reaction parameters such as reaction time, the acidity of the reaction solution, and the number of extractions, the study has identified optimal conditions for the derivatization reaction: a reaction time of 30 minutes, a reaction solution pH of 2, and 6 extraction iterations. Infrared spectroscopy and gas chromatography-mass spectrometry were employed to qualitatively confirm the derivatives, while HPLC was used for quantitative analysis, with a subsequent evaluation of measurement uncertainty. The results indicated that the synthesized formaldehyde-2,4-dinitrophenylhydrazone aligns well with the NIST Standard Spectrum Library, and could achieve a purity of up to 98% and an uncertainty of less than 1%, making it a promising candidate for standard substance formulation. Additionally, the established HPLC method has been proven capable of accurate formaldehyde-2,4-dinitrophenylhydrazone measurements. This study will offer vital insights for the preparation, valuation, and development of standard substances like formaldehyde-2,4-dinitrophenylhydrazone.
-
图 1 衍生反应原理[17]
Figure 1. Principle of the derivatization reaction
表 1 甲醛-2,4-二硝基苯腙的工作标准曲线信息
Table 1. Working standard curve information for formaldehyde-2,4-dinitrophenylhydrazone
序号 甲醛腙浓度x(mg·L−1) 峰面积Y(AU) 1 0.1029 44384 2 0.2051 83858 3 1.0884 425029 4 2.0262 787249 5 4.0012 1550083 一元线性回归方程:Y = 384910.694 x + 9485.342 线性相关系数:R2 = 0.9999 斜率:b=384910.694 标准曲线残差的标准偏差: $ {S}_{ R}=5117.94186 $ 测得待测样品甲醛-2,4-二硝基苯腙的浓度: $ {C}_{0}=4.557\mathrm{m}\mathrm{g}/\mathrm{L} $ 待测样品的重复测定次数:P=6 工作标准溶液的测定总次数:n=3×6=18 -
[1] 李瑞芬, 张秀尧, 张晓艺, 等. 高效液相色谱法测定冰鲜海产品中的甲醛[J]. 中国卫生检验杂志, 2021, 31(22): 2718-2719, 2724. [2] 张利平, 杨旭. 环境甲醛的监测方法[J]. 公共卫生与预防医学, 2018, 29(6): 78-82. [3] BARI M A, KINDZIERSKI W B. Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment[J]. Environmental Pollution, 2018, 235: 602-614. doi: 10.1016/j.envpol.2017.12.065 [4] ALTSHULLER A P. Assessment of the Contribution of Chemical Species to The Eye Irritation Potential of Photochemical Smog[J]. Journal of the Air Pollution Control Association, 1978, 28(6): 594-598. doi: 10.1080/00022470.1978.10470634 [5] 高先池. 环境中醛、酮的分析检测及其前体物的光降解研究[D]. 青岛: 中国海洋大学, 2003. [6] 张艾蕊, 王海, 任丹华, 等. TXRF分析样品前处理方法研究进展及其在环境监测领域的应用[J]. 计量科学与技术, 2022, 66(10): 57-64. [7] 方思炀. 环境中醛酮类物质检测的方法研究[D]. 广州: 广州大学, 2020. [8] HEATH A A, VAITILINGOM M, EHRENHAUSER F S, et al. Determination of aldehydes and acetone in fog water samples via online concentration and HPLC[J]. Journal of Atmospheric Chemistry, 2015, 72(2): 165-182. doi: 10.1007/s10874-015-9312-6 [9] ELVING P J, BENNETT C E. Polarographic Determination of Chloroacetaldehydes[J]. Analytical Chemistry, 1954, 26(10): 1572-1575. doi: 10.1021/ac60094a011 [10] 肖海燕. 石化废水中醛、酮类有机化合物分析方法研究[D]. 邯郸: 河北工程大学, 2016. [11] SUMNER A L, SHEPSON P B, GRANNAS A M, et al. Atmospheric chemistry of formaldehyde in the Arctic troposphere at Polar Sunrise, and the influence of the snowpack[J]. Atmospheric Environment, 2002, 36(15-16): 2553-2562. doi: 10.1016/S1352-2310(02)00105-X [12] 卢迎红, 任甜. 固定污染源废气中醛酮类化合物测定方法研究[J]. 环境保护科学, 2022, 48(5): 127-133. [13] 杨嘉慧, 姚智锴, 侯军沛, 等. 高效液相色谱法测定土壤中的甲醛[J]. 山东化工, 2022, 51(9): 128-129. [14] 薛昆鹏, 俞灵钰, 任兴发, 等. 改进的固相萃取-高效液相色谱法测定土壤中15种醛酮类化合物[J]. 色谱, 2023, 41(3): 265-273. [15] 生态环境部. 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法: HJ 1153-2020[S]. 北京: 中国标准出版社, 2020. [16] 生态环境部. 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法: HJ 1154-2020[S]. 北京: 中国标准出版社, 2020. [17] 张鹏, 周洁丹, 陈学劲, 等. 发动机尾气中醛酮化合物的检测与分析[J]. 汽车零部件, 2015(5): 16-19. [18] 李东芳. 水中甲醛、乙醛和丙烯醛的DNPH衍生化高效液相色谱测定[D]. 沈阳: 沈阳药科大学, 2003. [19] 李颖, 赵浩军, 刘飞, 等. 2, 4-二硝基苯肼柱前衍生-高效液相色谱法测定水中的微量乙醛[J]. 食品安全质量检测学报, 2019, 10(16): 5523-5527. [20] 杨巍. 高效液相色谱法测定室内空气甲醛含量的研究[D]. 大庆: 东北石油大学, 2015. [21] 马贺伟. 低分子醛酮类物质的GC-MS测定[J]. 皮革科学与工程, 2015, 25(6): 58-61. [22] 牟建. 紫外光谱法测定苯酚与苯胺和对苯二酚[J]. 环境科学与技术, 2011, 34(S1): 249-252. [23] 陆利敏. 儿茶酚胺类分子的光谱及活性位点的理论研究[D]. 贵阳: 贵州大学, 2022. [24] 黄新宇. 紫外光谱数据库的构造与初步研究[D]. 长沙: 中南大学, 2004. [25] 刘芬. 新型水杨醛类酰腙席夫碱及其铕、铽配合物的合成与性能研究[D]. 长沙: 湖南大学, 2013. [26] 林睿, 黄宗平, 赖莺, 等. 高效液相色谱法测定树脂工艺品中甲醛[J]. 分析试验室, 2013, 32(10): 63-66. [27] 彭锦峰, 刘景富, 吕爱华, 等. HPLC法测定食用香菇中的甲醛[J]. 分析试验室, 2005(4): 57-59. [28] 鄢家佳, 吴雨婷, 张静, 等. 柱前紫外衍生-高效液相色谱法快速测定水产品和水发食品中的甲醛[J]. 现代预防医学, 2014, 41(21): 3954-3956, 3998. [29] XUAN H D, KI-HYUN K. Evaluation of ternary mobile phases for the analysis of carbonyl compound derivatives using high-performance liquid chromatography[J]. The Scientific World Journal, 2011, 11: 1-19. doi: 10.1100/tsw.2011.4 [30] 任丹华, 张艾蕊, 范冰奇, 等. 模拟汽油中痕量磷元素的ICP-OES和ICP-MS方法测定[J]. 化学试剂, 2020, 42(5): 527-532. [31] 王梅玲, 王海, 任丹华, 等. 铜铟镓硒薄膜元素含量的ICP-OES/ICP-MS分析[J]. 计量科学与技术, 2022, 66(12): 11-15, 45. [32] 任丹华, 张艾蕊, 王梅玲, 等. 异辛烷中硫元素含量标准物质研制[J]. 计量科学与技术, 2022, 66(12): 16-20.