Design of a Miniature Ultra-Wideband Antenna with Low Cross Polarization
-
摘要: 在高精度近场法天线测量、平面波发生器应用等场合,工作频段通常受限于近场探头。为了克服开口波导探头的带宽限制,出现了基于Vivaldi天线的超宽带、小口径天线作为近场探头。然而,常见的Vivaldi天线是非对称结构,导致交叉极化性能较差。设计了一款低交叉极化小口径超宽带天线,采用5层对称结构改进了传统Vivaldi天线的非对称性,利用贝塞尔曲线设计渐变槽辐射结构、加载电阻和贴片以及刻蚀矩形斜槽,减小了交叉极化比和天线驻波,改善了天线辐射方向性图。该探头口径宽70 mm、长201 mm,在0.9~6 GHz频段内天线仿真所得交叉极化比优于40.9 dB,增益为−5.5~9.53 dBi,端口反射系数幅度低于−10 dB,其辐射方向性图在全频段不开裂、主波束指向不变。Abstract: In applications such as precise near field antenna measurements and plane wave generator, the operating frequency is often limited by the bandwidth of the near-field scanning probe. To overcome the bandwidth limitation of open-ended waveguide probes, Ultra-Wideband (UWB) small aperture antennas based on Vivaldi antennas have been developed. However, their cross polarization performance is poor due to their common asymmetric structure. To address this issue, a miniature UWB antenna with low cross polarization is proposed in this paper. A 5-layer symmetrical structure is used to improve the traditional asymmetric Vivaldi antenna, and a Bezier curve is employed to design the gradient slot radiation structure. Loading resistance, patch, and etching rectangular chutes are also used to reduce the antenna standing wave and improve radiation directivity. The proposed antenna has an aperture width of 70 mm and a length of 201 mm. In the 0.9-6 GHz frequency band, the simulated cross polarization ratio of the antenna is better than 40.9 dB, and the gain is between −5.5 dBi to 9.53 dBi. The port reflection coefficient amplitude is less than −10 dB, and the radiation pattern is smooth, symmetrical, and without pits across the entire frequency bandwidth.
-
Key words:
- metrology /
- Vivaldi antenna /
- cross polarization ratio /
- ultra-wideband /
- symmetrical structure /
- miniature
-
表 1 天线尺寸参数
Table 1. Antenna dimension parameters
参数 尺寸(mm) 参数 尺寸(mm) L 201.000 Lm 18.508 W 70.000 Ws 0.882 Wr 8.000 Ls 5.700 Wc 2.750 d1 0.035 Lc 16.000 d2 0.508 Wm 1.287 d3 0.103 表 2 贝塞尔曲线中
$ {P}_{i} $ 的取值Table 2. Value of
$ {P}_{i} $ in Bezier Curve系数$ {P}_{i} $ $ {P}_{i}(x)$ $ {P}_{i}(y) $ $ {P}_{1} $ 0.50 0.00 $ {P}_{2} $ 1.92 115.42 $ {P}_{3} $ 4.72 121.01 $ {P}_{4} $ 7.67 144.00 $ {P}_{5} $ 35.00 145.32 -
[1] Gibson P J. The Vivaldi Aerial [C]. IEEE, 2007. [2] 赵媛. 用于近场测量的超宽带双极化探头的研究[D]. 西安: 西安电子科技大学, 2021. [3] 曾强. 近场天线测量系统的探头设计与研究[D]. 西安: 西安电子科技大学, 2021. [4] 印倩, 李丽娴, 邵晓龙, 等. 一种新型超宽带双极化EMC测量天线[J]. 无线电工程, 2020, 50(1): 77-80. doi: 10.3969/j.issn.1003-3106.2020.01.015 [5] 苏腾, 郭敏, 刘贵斌, 等. 信号源端口电压驻波比测量方法研究[J]. 计量科学与技术, 2022, 66(7): 33-37. [6] 贾涵秀. 近场天线测量系统中双极化探头的研究[D]. 西安: 西安电子科技大学, 2015. [7] 聂梅宁, 李兰兰, 高鸿莹, 等. 实时分析带宽和全捕获最小脉宽幅度比校准方法的研究[J]. 计量科学与技术, 2022, 66(7): 13-17,27. [8] 赵宝丽, 焦永昌. 基于3D打印的X波段多波束低剖面龙伯透镜天线[C]. 西安: 西安电子科技大学出版社, 2019. [9] 刘永滨, 张季娜, 杜华, 等. 用于埋地管道探测的Vivaldi超宽带天线设计[J]. 煤气与热力, 2022, 42(12): 29-33. doi: 10.13608/j.cnki.1000-4416.2022.12.008 [10] 刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分析[J]. 计量科学与技术, 2022, 66(4): 89-94. [11] 甄法健. 毫米波医学成像系统的超宽带天线研究[D]. 长春: 长春理工大学, 2022. [12] 钟华. 应用于医学微波成像系统的超宽带天线设计与研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [13] 王丽黎, 刘庆, 杜忠红. 用于雷达隐身设备的低RCS超宽带Vivaldi天线[J]. 电子测量与仪器学报, 2022, 36(3): 122-129. [14] 高忠雄. 天线近场测量系统关键技术研究[D]. 北京: 北京邮电大学, 2021. [15] 郁佳婧. 平面天线近场测量系统的研究[D]. 南京: 南京信息工程大学, 2020. [16] 刘星汛, 程先友, 黄承祖. 110 GHz~170 GHz天线平面近场测量系统[J]. 宇航计测技术, 2022, 42(5): 13-16. doi: 10.12060/j.issn.1000-7202.2022.05.03 [17] 周勇, 喻程. 基于等效磁流法的平面近场测量技术研究[J]. 电子测量技术, 2022, 45(21): 169-174. [18] 张重阳, 刘浩. 柱面近场天线测量机械误差评估[J]. 空军预警学院学报, 2019, 33(4): 273-276. [19] 王义, 陈运涛, 温中贺, 等. 天线柱面近场测量的散射源误差抑制方法研究[J]. 中国测试, 2016, 42(11): 23-26. doi: 10.11857/j.issn.1674-5124.2016.11.005 [20] 孔凡泉. 一种低成本球面多探头近场天线测量系统设计[J]. 空天预警研究学报, 2022, 36(2): 117-120. doi: 10.3969/j.issn.2097-180X.2022.02.009 [21] 陈艳婷. 天线球面近场测量系统中近远场转换精度的研究[D]. 北京: 北京邮电大学, 2019. [22] 邢荣欣, 阚劲松, 王酣, 等. 球面近场天线测量不确定度分析和评定[J]. 安全与电磁兼容, 2017(3): 39-43. [23] 殷娇, 张依凡, 谭东升, 等. 一款超宽带小型化双极化Vivaldi天线[C]. 西安: 西安电子科技大学出版社, 2021. [24] Dzagbletey P A, Shim J Y, Jeong J Y, et al. Dual-polarized Vivaldi antenna with quarter-wave balun feeding[C]. Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2017. [25] Sonkki M, Sanchez-Escuderos D, Hovinen V, et al. Wideband Dual-Polarized Cross-Shaped Vivaldi Antenna[J]. IEEE Trans on Antennas and Propagation, 2015, 63(6): 2813-2819. doi: 10.1109/TAP.2015.2415521 [26] 张东云, 宋政辉, 潘晓, 等. 微波功率传感器自动校准系统设计与实现[J]. 计量科学与技术, 2022, 66(12): 46-49,54. doi: 10.12338/j.issn.2096-9015.2021.0248 [27] 张锋, 纪奕才, 方广有. 一种工作于0.5~2GHz的小型化Vivaldi天线[J]. 微波学报, 2010, 26(6): 54-57. [28] 刘晓, 丛惠平, 何红英, 等. 一种基于微带线-带状线巴伦馈电的Vivaldi天线设计[J]. 无线电工程, 2020, 50(11): 970-974. doi: 10.3969/j.issn.1003-3106.2020.11.011 [29] Lin F, Qi Y, Fan J, et al. 0.7–20GHz Dual-Polarized Bilateral Tapered Slot Antenna for EMC Measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6): 1271-1275. doi: 10.1109/TEMC.2014.2330291 [30] 聂梅宁, 张咏梅, 姜威, 等. VOR参数测量能力计量比对分析[J]. 计量科学与技术, 2022, 66(5): 61-68. [31] 孙思扬, 陈晓晨, 戴巡, 等. 多探头球面近场测试系统校准方法及对准角度误差分析[J]. 计量技术, 2018(12): 78-81. [32] 蔡洪伟, 王维龙, 薛正辉, 等. 标准天线法校准EMC喇叭天线的天线系数不确定度分析[J]. 计量技术, 2018(10): 39-42. [33] 曹利波, 范永春. 基于激光跟踪仪的天线空间位置测试与标定方法[J]. 计量技术, 2018(1): 30-31, 48.