Development and Analysis of Vacuum Adiabatic Oxygen Bomb Calorimeter
-
摘要: 为了更好的满足能源物资的贸易结算、清洁利用以及碳排放核算等需求,提升可燃物质发热量的测量精度和准确度,研制了基于真空杜瓦瓶技术的高精度绝热式氧弹热量计。介绍了热量计的基本结构和工作原理,提出了与之适用的测试流程和试验方法。燃烧热物质以美国标准与技术研究院(NIST)的苯甲酸(SRM39j)为例,测试了热量计的热容量和燃烧物的发热量,评定了发热量示值误差不确定度,讨论了温度电路的线性度、发热量的有效范围和热量计的环境适应性。试验数据表明,热容量的相对标准偏差为0.047%,3个月变化量为0.138%,苯甲酸发热量示值误差为17.8 J·g−1,测量扩展不确定度为27.8 J(k=2),温度电路的线性度为0.99993,有效测试范围为15800~37000 J,热量计环境适应性有待加强。Abstract: In order to better meet the needs of trade settlement, clean utilization, and carbon emission accounting for energy materials, and to improve the measurement accuracy and precision of the calorific value of combustible materials, a high-precision adiabatic oxygen bomb calorimeter based on vacuum Dewar bottle technology was developed. This paper introduces the basic structure and working principle of the calorimeter, and proposes a suitable testing procedure and method. The calorimeter's heat capacity and the calorific value of combustion materials were tested using benzoic acid (SRM39j) from the National Institute of Standards and Technology (NIST) as an example. The error uncertainty of calorific value indication was evaluated, and the linearity of the temperature circuit, the effective range of calorific value, and the environmental adaptability of the calorimeter were discussed. Test data show that the relative standard deviation of heat capacity is 0.047%, the change over three months is 0.138%, the calorific value indication error for benzoic acid is 17.8 J·g−1, and the expanded uncertainty of measurement is 27.8 J (k=2). The linearity of the temperature circuit is 0.99993, the effective testing range is 15800-37000 J, and the environmental adaptability of the calorimeter needs to be improved.
-
Key words:
- metrology /
- vacuum /
- calorimeter /
- heat capacity /
- combustion heat /
- oxygen bomb /
- carbon neutrality /
- emission peak
-
表 1 热容量实验数据
Table 1. Experimental data of heat capacity
质量m/g 温升ΔT/ K 热容量E/ J·K−1 均值$ \overline E $/ J·K−1 标准偏差S RSD/ % 0.99641 3.4944 7556.1 7561.48 3.5512 0.047 1.00489 3.5192 7566.6 1.01098 3.5446 7557.8 1.00441 3.5209 7559.3 1.01048 3.5394 7565.2 1.00279 3.5123 7565.6 1.00352 3.5165 7562.1 1.01269 3.5489 7561.3 0.99438 3.4845 7562.2 0.99279 3.4806 7558.6 表 2 苯甲酸发热量实验数据
Table 2. Experimental data of calorific value of benzoic acid
质量
m/g温升
ΔT/ K发热量
Q/ J·g−1均值
$ \overline Q $/ J•g−1标称值
Qs/ J•g−1示值误差/
J·g−10.99772 3.4995 26457 26451.8 26434 17.8 1.01025 3.5436 26459 1.00914 3.5388 26452 1.00552 3.5258 26449 1.01312 3.5514 26442 表 3 电阻与温度的相关系数
Table 3. Correlation coefficient between resistance and temperature
R/Ω 500.96 509.77 519.52 529.25 537.03 548.68 558.37 566.11 575.78 585.43 T/℃ 1.0503 5.0502 10.0497 15.0494 19.0490 25.0490 30.0489 34.0488 39.0486 44.0487 线性度 Correl (R,T)=0.99993 表 4 环境适用性试验数据
Table 4. Environmental suitability test data
环境温度/℃ 内筒初始水温/℃ 温差$ \Delta {T}_{\mathrm{a}} $/℃ 试样质量m/g 试验前后水温升$ \Delta {T}_{\mathrm{b}} $/℃ 发热量Q/ J·g−1 25.0 24.8914 −0.1086 1.0104 3.5396 26425 24.0 24.9015 0.9015 0.9985 3.4948 26401 23.0 25.0108 2.0108 1.0028 3.5073 26382 22.0 25.0346 3.0346 0.9896 3.4592 26366 26.0 25.1021 −0.8979 1.0162 3.5625 26445 27.0 25.1016 −1.8984 1.0031 3.5191 26462 28.0 25.2011 −2.7989 0.9986 3.5050 26475 29.0 25.1024 −3.8976 0.9962 3.4983 26488 表 5 发热量示值误差测量结果不确定度
Table 5. Uncertainty of measurement results for calorific value indication error
不确定度分量 不确定度来源 测量结果 概率分布 标准不确定度 u1 重复性 S:4.78J / 4.78 J u2 标准物质 MPE:±3J 均匀性分布 1.73 J u3 热容量稳定性 S:±1.59 J·K−1 均匀性分布 5.57 J u4 样品称量 MPE:±0.05mg 均匀性分布 0.76 J u5 温度差值 线性误差± 0.007% 均匀性分布 1.06 J 合成不确定度uc=13.9 J(k=2) -
[1] 田华玲, 粟智, 王英波. 氧弹燃烧技术应用研究进展[J]. 光谱实验室, 2012, 29(6): 3888-3894. doi: 10.3969/j.issn.1004-8138.2012.06.139 [2] 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. [3] 蒋忠, 张亮, 王海峰, 等. 企业核算碳排放量不确定度评估[J]. 计量学报, 2022, 43(3): 420-426. [4] 胡芃, 陈则韶. 量热技术和热物性测定[M]. 北京: 中国科学技术出版社, 2009. [5] 莫晓山, 胡彪, 熊知明, 等. 工业氧弹热量计电能标定装置研究[J]. 中国测试, 2016, 42(9): 72-76. doi: 10.11857/j.issn.1674-5124.2016.09.015 [6] 莫晓山, 胡彪, 许光平, 等. 可燃物质热值测量仪——氧弹量热仪综述[J]. 计量技术, 2014(2): 23-26. [7] 谭志诚, 孙广宇, 尹安学, 等. 60─360K温区小样品量自动绝热量热装置[J]. 化学世界, 1996(S1): 148-149. doi: 10.19500/j.cnki.0367-6358.1996.s1.089 [8] 李旭, 李强国, 蒋建宏, 等. 一种精密恒温环境微量燃烧-溶解-反应多用量热计的设计及应用[J]. 物理化学学报, 2017, 33(6): 1114-1122. [9] 黄应军, 汪存信, 宋昭华, 等. 精密滴定热量计的研制[J]. 武汉大学学报(自然科学版), 1994(6): 76-80. [10] 俞秀慧, 李醒亚, 贺锡蘅, 等. 标准绝热型弹式热量计及高纯甲烷热值的测定[J]. 计量学报, 1988(2): 115-119. [11] 俞秀慧, 孟凡敏. 等温型、绝热型氧弹热量计检定规程的修订[J]. 计量技术, 2001(8): 42-44. [12] 国家质量监督检验检疫总局. 煤的发热量测定方法: GB/T 213-2008 [S]. 北京: 中国标准出版社, 2008. [13] 许飞, 杨扬, 张江伟, 等. 牛顿冷却定律及其适用范围的探究[J]. 大学物理实验, 2022, 35(2): 11-13. [14] 国家市场监督管理总局. 氧弹热量计检定规程: JJG 672-2018 [S]. 北京: 中国标准出版社, 2018. [15] 王兴无, 张太平. 氧弹热量计性能技术要求综述[J]. 江西电力, 2013, 37(1): 95-97. [16] 张遥奇, 胡彪, 莫晓山. 基于AD7710的热量计精密测温电路设计[J]. 仪表技术, 2020(2): 1-4. [17] 胡彪, 熊知明, 罗建明, 等. 关于氧弹热量计型式评价的探讨[J]. 计量技术, 2016(11): 51-54. [18] 米娟层, 魏宁. 煤的弹筒发热量测量结果不确定度评定[J]. 煤质技术, 2018(5): 48-50,53. [19] 王海峰, 谷喜凤, 李佳, 等. 氧弹热量计测量苯甲酸热值及其示值误差的不确定度评定[J]. 计量技术, 2014(10): 21-24. [20] 刘福国, 国钦光, 殷炳毅, 等. 电厂燃煤虚拟采样及发热量均值不确定度评定[J]. 计量学报, 2021, 42(4): 463-468. [21] 佟俊婷, 李伟, 姜天淇. 示差扫描量热仪校准结果不确定度的评定[J]. 计量与测试技术, 2020, 47(9): 108-111. [22] 赵玉敏, 彭亮, 王天宇, 等. 基于标准表法热量表检定装置建立的试验研究[J]. 计量技术, 2020(1): 21-23. [23] 吕金华, 张彩虹, 肖利华. 氧弹安全性能综合测试仪研制[J]. 计量技术, 2018(4): 19-22. [24] 毕经亮. 示差扫描热量计高温校准的探讨与应用[J]. 计量与测试技术, 2020, 47(1): 46-47. [25] 王天宇, 赵玉敏, 朱江, 等. 山东省热量表检定装置比对实例[J]. 计量技术, 2020(7): 39-42. [26] 邢金京. 检定氧弹热量计时需注意的问题[J]. 中国计量, 2022(10): 125-126. [27] 赵丹. 恒温式自动氧弹热量计的热容量稳定性分析[J]. 化学工程与装备, 2022(8): 195-196,194. [28] 袁翠翠, 杜政烨, 茌方, 等. 氧弹热量计性能验收方法实践[J]. 煤炭加工与综合利用, 2022(3): 86-90. [29] 杜中原, 苏艳芳, 陈凯旋, 等. 2种氧弹热量计测定样品总能的差异及其对能量消化率的影响[J]. 动物营养学报, 2021, 33(2): 1128-1136. [30] 宋小卫, 李贺然, 段卫宇, 等. 蒸发损失测定影响因素研究及不确定度评定[J]. 计量科学与技术, 2022, 66(7): 3-6.