[1] |
RU X, GU N, SHANG H, et al. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends [J]. Micromachines, 2022, 13(6): 879. doi: 10.3390/mi13060879
|
[2] |
LENOBLE A, LAVIEVILLE P, FOLOPPE Y, et al. High-end inertial navigation demonstration based on MEMS accelerometers [C]. ISS, 2022.
|
[3] |
KONTELIS S, PSYCHALINOS C. Comparison of Complementary Filters Implementations for Unmanned Aerial Vehicles [C]. PACET, 2022.
|
[4] |
LOZA E A T, NIETO A C, BUSTAMANTE S G H. Accelerometer prototype with combined filtering for noise attenuation using an embedded system and low-cost MEMS sensors for building monitoring [C]. INTERCON, 2022.
|
[5] |
OCZAK M, BAYER F, VETTER S, et al. Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data [J]. Computers and Electronics in Agriculture, 2022, 192: 106517. doi: 10.1016/j.compag.2021.106517
|
[6] |
LI C, YANG B, ZHENG X, et al. Nano-g Micro-Optics Accelerometer With Force Feedback Control and Improved Dynamic Range [J]. IEEE Sensors Journal, 2022, 22(14): 14018-14025. doi: 10.1109/JSEN.2022.3183640
|
[7] |
SHOKOUHMAND A, WEN H, KHAN S, et al. Diagnosis of Peripheral Artery Disease Using Backflow Abnormalities in Proximal Recordings of Accelerometer Contact Microphone (ACM) [J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 274-285. doi: 10.1109/JBHI.2022.3218595
|
[8] |
MALAYAPPAN B, LAKSHMI U P, RAO B V V S N P, et al. Sensing Techniques and Interrogation Methods in Optical MEMS Accelerometers: A Review [J]. IEEE Sensors Journal, 2022, 22(7): 6232-6246. doi: 10.1109/JSEN.2022.3149662
|
[9] |
LU Q, WANG Y, WANG X, et al. Review of micromachined optical accelerometers: from mg to sub-μg [J]. Opto-Electronic Advances, 2021, 4(3): 20004501-20004515.
|
[10] |
ABBASPOUR-SANI E, RUEY-SHING H, CHEE YEE K. A novel optical accelerometer [J]. IEEE Electron Device Letters, 1995, 16(5): 166-168. doi: 10.1109/55.382228
|
[11] |
CHEN L H, LIN Q, LI S, et al. Optical accelerometer based on high-order diffraction beam interference [J]. Applied Optics, 2010, 49(14): 2658-2664. doi: 10.1364/AO.49.002658
|
[12] |
ZHOU F, BAO Y L, MADUGANI R, et al. Broadband thermomechanically limited sensing with an optomechanical accelerometer [J]. Optica, 2021, 8(3): 350-356. doi: 10.1364/OPTICA.413117
|
[13] |
ZHANG T, LIU H, FENG L, et al. Noise suppression of a micro-grating accelerometer based on the dual modulation method [J]. Applied Optics, 2017, 56(36): 10003. doi: 10.1364/AO.56.010003
|
[14] |
宫美梅, 王策, 金丽, 等. 抑制交叉轴干扰的纳米光栅加速度计 [J]. 传感器与微系统, 2022, 41(3): 20-23, 31.
|
[15] |
万峰华. 集成光学加速度计及测试系统的设计 [D]. 南京: 东南大学, 2016.
|
[16] |
王俊. 振子型光纤光栅加速度计关键技术研究 [D]. 长沙: 国防科学技术大学, 2016.
|
[17] |
PURDY T P, PETERSON R W, REGAL C A. Observation of Radiation Pressure Shot Noise on a Macroscopic Object [J]. Science, 2013, 339(6121): 801-804. doi: 10.1126/science.1231282
|
[18] |
TANG S H, LIU H F, YAN S T, et al. A high-sensitivity MEMS gravimeter with a large dynamic range [J]. Microsystems & Nano engineering, 2019, 5(1): 11.
|
[19] |
MCCLELLAND J J, ANDERSON W R, BRADLEY C C, et al. Accuracy of Nanoscale Pitch Standards Fabricated by Laser-Focused Atomic Deposition [J]. J Res Natl Inst Stand Technol, 2003, 108(2): 99-113. doi: 10.6028/jres.108.0010
|
[20] |
林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11, 26. doi: 10.12338/j.issn.2096-9015.2022.0248
|
[21] |
DENISHEV K H, PETROVA M R. Accelerometer design [J]. Proceedings of ELECTRONICS, 2007, 2007: 159-164.
|
[22] |
赵文静. 基于SOI技术的MEMS惯性加速度计的设计与优化 [D]. 成都: 电子科技大学, 2010.
|
[23] |
ZHANG Y, GAO S, XIONG H, et al. Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error [J]. Optics Express, 2019, 27(5): 6565-6579. doi: 10.1364/OE.27.006565
|
[24] |
GAO S, ZHOU Z, ZHANG Y, et al. High-resolution micro-grating accelerometer based on a gram-scale proof mass [J]. Optics Express, 2019, 27(23): 34299-34312.
|
[25] |
王云阳. 笼型感应电机断条故障时的转子受力计算与分析 [D]. 哈尔滨: 哈尔滨理工大学, 2014.
|
[26] |
赵双双. 微光学集成的高精度MOEMS加速度传感器研究 [D]. 杭州: 浙江大学, 2013.
|
[27] |
樊伟, 冯德全, 乔学光. 基于膜片式悬臂梁的低频光纤光栅加速度计(特邀)[J]. 光子学报, 2022, 51(10): 181-190.
|
[28] |
禹大宽, 王向宇, 高宏, 等. 基于对称铰链的光纤布拉格光栅高频加速度检波器(特邀)[J]. 光子学报, 2022, 51(10): 172-180.
|
[29] |
郑翔, 杨波. 基于激光器调制的微光栅加速度计噪声抑制[J]. 兵器装备工程学报, 2022, 43(10): 300-305. doi: 10.11809/bqzbgcxb2022.10.043
|
[30] |
龙宽, 瞿剑苏, 乔磊, 等. 一种几何参数随动校准装置的研究[J]. 计量科学与技术, 2022, 66(3): 41-48.
|