Study on the Calibration Method of Nano-Positioning Stages Using Grating Interferometers
-
摘要: 随着集成电路制造关键尺寸向着5 nm的节点迈进,我国集成电路检测设备产业化的呼声剧增,纳米位移台作为集成电路制造、超精密加工、精密科学仪器制造等领域检测设备的关键器件,研究人员对其重复定位精度、线性度的要求越来越高。光栅干涉仪以光栅作为标准物质溯源到长度基准,因其对环境因素的变化不敏感、抗干扰能力强、稳定性高的优点,成为微纳检测设备产业化的新方向。采用基于标准物质的光栅干涉仪,针对纳米位移台的重复定位精度、线性度分别设计了不同的校准方案,并通过实验验证方案的可行性,最后对该校准方法的测量不确定度和溯源性进行了分析,可以看出设计的校准方案测量稳定、溯源链短。Abstract: As the critical dimensions in integrated circuit manufacturing approach the 5nm node, the demand for the industrialization of integrated circuit testing equipment has surged. The nano-positioning stage, a pivotal component in semiconductor manufacturing, ultra-precision machining, and precision instrument manufacturing, is experiencing increasingly stringent demands for its repetitive positioning accuracy and linearity. The grating interferometer, which leverages the pitch of the grating as a reference material for measurement, showcases remarkable environmental resilience and superior stability. This makes the grating interferometer an emerging trend in the industrialization of macro-nano measurement equipment. This study presents a calibration method for the nano-positioning stage using a grating interferometer. The feasibility of this method is confirmed through experimental validations. Furthermore, an in-depth analysis of the measurement uncertainty and traceability chain is conducted, highlighting the robustness and shortened traceability path of the proposed calibration approach.
-
表 1 基于标准物质的光栅干涉仪10次重复性测量结果
Table 1. Ten repetitive measurements using the grating interferometer based on a reference material
/μm 序号 1 2 3 4 5 6 7 8 9 10 位移值 100.9343 100.9504 100.8810 100.8702 100.8260 100.8178 100.7467 100.7206 100.7382 100.6854 均值 100.8171 最大偏差 0.1333 表 2 纳米位移台线性度测量实验结果
Table 2. Linearity calibration results for the nano-positioning stage
采样点 线性偏差
(μm)序号 1 2 3 4 5 6 7 8 9 10 实验1 −0.2457 −0.1305 0.01304 0.1010 0.1451 0.1250 0.0247 0.7074 −0.1947 −0.5476 实验2 −0.2408 −0.1233 0.0211 0.0892 0.1356 0.1157 0.0646 0.6641 −0.1342 −0.6007 实验3 −0.2664 −0.1407 −0.0069 0.0691 0.1162 0.1125 0.0386 0.6173 −0.1727 −0.6156 实验4 −0.2481 −0.12055 0.01609 0.0929 0.1473 0.1380 0.0444 0.6985 −0.1676 −0.5741 实验5 −0.2465 −0.1216 0.0148 0.0976 0.1355 0.1196 0.0151 0.6760 −0.1150 −0.5765 最大线性偏差均值(μm) 0.673 线性度 0.67% -
[1] 李东明, 柴长忠, 沈文强, 等. 压电驱动微动平台结构的设计优化和仿真分析[J]. 压电与声光, 2019, 41(3): 396-399. [2] Lee H J , Woo S , Park J , et al. Compact compliant parallel XY nano-positioning stage with high dynamic performance, small crosstalk, and small yaw motion[J]. Microsystem Technologies, 2018, 24: 2653-2662. [3] 郑志月, 施玉书, 高思田, 等. 高精度电容式位移传感器校准方法的研究[J]. 计量学报, 2015, 36(, 1): 14-18. doi: 10.3969/j.issn.1000-1158.2015.01.04 [4] 王芳, 施玉书, 张树, 等. 基于硅晶格常数的纳米线宽计量技术[J]. 计量科学与技术, 2022, 66(4): 13-18, 47. [5] Yang C , Li C , Xia F , et al. Charge Controller With Decoupled and Self-Compensating Configurations for Linear Operation of Piezoelectric Actuators in a Wide Bandwidth[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5392-5402. [6] Zhu W L , Zhu Z , Shi Y , et al. Design, modeling, nanalysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning[J]. Smart Materials and Structures, 2016, 25(11): 115033. [7] Kang B W, Kim J. Design, Fabrication, and Evaluation of Stepper Motors Based on the Piezoelectric Torsional Actuator [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(6): 1850-1854. doi: 10.1109/TMECH.2013.2269171 [8] JM Paros, Weisboro L . How to Design Flexure Hinges[J]. Machine Design, 1965, 37(27): 151-157. [9] Midha A , Norton T W , Howell L L . On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms[J]. Journal of mechanical design, 1994, 116(1): 270-279. [10] 范伟, 余晓芬. 压电陶瓷驱动器蠕变特性的研究[J]. 仪器仪表学报, 2006, 27(11): 1383-1386. doi: 10.3321/j.issn:0254-3087.2006.11.005 [11] 陈爽, 彭希锋. 基于激光干涉的位移传感器自动化校准装置[J], 仪表技术与传感器, 2021 (4): 28-33. [12] 池峰, 朱煜, 张志平, 等. 双频激光干涉测量中的环境补偿技术[J]. 中国激光, 2014, 41(4): 190-196. [13] Hu P C, Chang D, Tan J B, et al. Displacement measuring grating interferometer: a review [J]. Front Inform Tech El, 2019, 20(5): 631-654. doi: 10.1631/FITEE.1800708 [14] Korpelainen V, Lassil A. Calibration of a commercial AFM: traceability for a coordinate system [J]. Meas Sci Technol, 2007, 18(2): 395-403. doi: 10.1088/0957-0233/18/2/S11 [15] 王建波, 殷聪, 石春英, 等. 高功率碘稳频He-Ne激光波长参考源 [J]. 红外与激光工程, 2021, 50(4): 7. [16] 高思田. 计量型原子力显微镜的研究 [D]. 天津: 天津大学, 2007. [17] Dai G L, Koenders L, Pohlenz F, et al. Accurate and traceable calibration of one-dimensional gratings [J]. Meas Sci Technol, 2005, 16(6): 1241-1249. doi: 10.1088/0957-0233/16/6/001 [18] Dai G L, Pohlenz F, Dziomba T, et al. Accurate and traceable calibration of two-dimensional gratings [J]. Meas Sci Technol, 2007, 18(2): 415-421. doi: 10.1088/0957-0233/18/2/S13 [19] 王国超, 颜树华, 高雷, 等. 光栅干涉位移测量技术发展综述[J]. 激光技术, 2010, 34(5): 661-664. doi: 10.3969/j.issn.1001-3806.2010.05.023 [20] 余茜茜, 施玉书, 张树, 等. 微纳米台阶高度评定方法的比较与分析[J]. 计量科学与技术, 2020(8): 29-33. doi: 10.3969/j.issn.1000-0771.2020.08.06 [21] 李琪, 施玉书, 李伟, 等. 微纳米光学测量的严格耦合波分析方法[J]. 计量科学与技术, 2020(12): 3-6, 11. doi: 10.3969/j.issn.2096-9015.2020.12.01 [22] Michael M, Petr B, Petr K, et al. The CCL-K11 ongoing key comparison: final report for the year 2010 [J]. Metrologia, 2011, 48(1A): 04001. doi: 10.1088/0026-1394/48/1A/04001 [23] Didier A, Ignatovich S, Benkler E, et al. 946-nm Nd: YAG digital-locked laser at 1.1×10−16 in 1 s and transfer-locked to a cryogenic silicon cavity [J]. Optics Letters, 2019, 44(7): 1781-1784. doi: 10.1364/OL.44.001781 [24] Morzynski P, Wcislo P, Ablewski P, et al. Absolute frequency measurement of rubidium 5S-7S two-photon transitions [J]. Optics Letters, 2013, 38(22): 4581-4584. doi: 10.1364/OL.38.004581 [25] F Cheng, N Jin, F Zhang, et al. A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy[J]. Chinese Physic: B, 2021, 30: 50603-050603. doi: 10.1088/1674-1056/abd754 [26] 周奇, 刘炳锋, 连笑怡, 等. 大范围二维纳米位移台的控制及非线性校准的实验研究[J]. 计量学报, 2018, 39(6): 771-776. doi: 10.3969/j.issn.1000-1158.2018.06.04 [27] 邓晓, 程鑫彬, 林子超, 等. 一种自溯源型光栅干涉精密位移测量系统: CN113566714B[P]. 2021-10-29. [28] 林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11, 26. doi: 10.12338/j.issn.2096-9015.2022.0248 [29] 邓晓, 李同保, 程鑫彬. 自溯源光栅标准物质及其应用[J]. 光学精密工程, 2022, 30(21): 2608-2625. [30] Deng X , Ma Y , Zhang P , et al. Investigation of shadow effect in laser-focused atomic deposition[J]. APPLIED SURFACE SCIENCE, 2012, 261: 464-469. [31] X. Deng, J. Liu, L. Zhu, et al. Natural square ruler at nanoscale[J]. Applied physics express, 2018, 11: 075201. doi: 10.7567/APEX.11.075201