Development and Metrological Techniques of Nano-Step Height Reference Materials Based on Laser Traceability
-
摘要: 随着半导体产业的快速发展,高精度极小尺寸三维纳米制造技术给纳米测量技术提出了更高的要求,急需开发与之相应的纳米几何量标准物质来满足这一日益迫切的需求。为实现我国纳米台阶高度标准物质的可控制备和纳米高度量值的可溯源性,我国自主研发了与国际水平相当的系列纳米台阶高度标准物质,并基于激光波长实现了米定义直接溯源,为支撑多领域技术研究,打破国外垄断,完善我国纳米几何量值传递体系,促进纳米产业的发展做出了重要贡献。通过对国内外纳米台阶高度标准物质的相关研究进行分析对比,就纳米台阶高度标准物质的研制方法及计量技术进行综述,以期为纳米台阶高度标准物质及其他类型的微纳米几何量标准物质的研究提供参考与展望。Abstract: With the rapid growth of the semiconductor industry, the demand for high-precision, small-scale three-dimensional nanomanufacturing techniques has increased, necessitating the development of corresponding nanogeometry reference materials. In response, China has independently developed a series of nano-step height reference materials comparable to international standards, achieving traceability to the meter definition through laser wavelength. This initiative has significantly contributed to supporting technological research across various domains, breaking foreign monopolies, enhancing China's nano-geometry value transfer system, and fostering the nano industry's growth. This paper reviews and compares domestic and international research on nano-step height reference materials, summarizing the fabrication methods and metrology techniques. It aims to provide references and insights for future research on nano-step height reference materials and other micro- and nano-geometry reference materials.
-
Key words:
- metrology /
- nano-step height /
- reference materials /
- traceability
-
图 5 毫米级纳米几何结构样板校准装置[13]
Figure 5. Metrological device for calibrating millimeter-range nano-geometric structures
图 8 纳米台阶轮廓优化算法[22]
Figure 8. Algorithm for optimizing nano-step profiles
表 1 典型台阶高度标准物质对比
Table 1. Comparison of typical nano-step height reference materials
制造机构 标准物质编号 特征尺寸/nm 扩展不确定度/nm 测量机构 德国FIMS Nano2 7 1.6 德国PTB 20 1.4 70 1.5 美国VLSI SHS-80QC 8 0.5 美国NIST SHS-180QC 18 0.9 SHS-440QC 44 0.7 中国国家纳米科学中心 GBW13952 50 2.8 中国计量科学研究院 GBW13950 100 3.6 中国西安交通大学 GBW13975 5 1.2 GBW13976 10 1.0 GBW13977 20 2.0 GBW13978 40 2.0 -
[1] GUO B, SUN J, HUA Y, et al. Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications[J]. Nanomanufacturing and Metrology, 2020, 3(1): 26-67. doi: 10.1007/s41871-020-00056-5 [2] IKUMAPAYI O M, AKINLABI E T, ADEOYE A O M, et al. Microfabrication and nanotechnology in manufacturing system-An overview[J]. Materials Today:Proceedings, 2021, 44: 1154-1162. doi: 10.1016/j.matpr.2020.11.233 [3] SEO M H, YOO J Y, JO M S, et al. Geometrically structured nanomaterials for nanosensors, NEMS, and nanosieves[J]. Advanced Materials, 2020, 32(35): 1907082. doi: 10.1002/adma.201907082 [4] Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths[J]. Nature, 2022, 603(7900): 259-264. doi: 10.1038/s41586-021-04323-3 [5] Bunday B D, Orji N G, Allgair J A. High volume manufacturing metrology needs at and beyond the 5 nm node[J]. Proceedings of SPIE, 2021, 11611: 116110F. [6] Orji N G, Badaroglu M, Barnes B M, et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1(10): 532-547. doi: 10.1038/s41928-018-0150-9 [7] Hills G, Lau C, Wright A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602. doi: 10.1038/s41586-019-1493-8 [8] 王琛英, 景蔚萱, 蒋庄德, 等. 采用HRTEM对石墨烯材料单层厚度测量的研究[J]. 计量学报, 2017, 38(2): 145-148. doi: 10.3969/j.issn.1000-1158.2017.02.04 [9] Postek M T, Vladar A, Ming B, et al. Documentation for reference material (RM)8820: A versatile, multipurpose dimensional metrology calibration standard for scanned particle beam, scanned probe and optical microscopy[EB/OL].https://doi.org/10.6028/NIST.sp.1170. [10] Raid I, Eifler M, Kusnezowa T, et al. Calibration of Ellipso-Height-Topometry with nanoscale gratings of varying materials[J]. Optik, 2015, 126(23): 4591-4596. doi: 10.1016/j.ijleo.2015.08.093 [11] 蒋庄德, 景蔚萱. 纳米测量及纳米样板[J]. 纳米技术与精密工程, 2004, 2(1): 16-19. [12] 蒋庄德, 王琛英, 杨树明. 典型纳米结构制备及其测量表征[J]. 中国工程科学, 2013, 15(01): 15-20,27. doi: 10.3969/j.issn.1009-1742.2013.01.005 [13] 高思田, 李琪, 施玉书, 等. 我国微纳几何量计量技术的研究进展[J]. 仪器仪表学报, 2017, 38(8): 1822-1829. doi: 10.3969/j.issn.0254-3087.2017.08.001 [14] 高慧芳, 任玲玲. 纳米尺度氧化铪薄膜膜厚标准物质的研制[J]. 计量科学与技术, 2021, 65(1): 61-65,78. [15] 邓晓, 李同保, 程鑫彬. 自溯源光栅标准物质及其应用[J]. 光学精密工程, 2022, 30(21): 2608-2625. [16] Wang C, Liu D, Zhang Y, et al. High-Efficiency and Reliable Value Geometric Standard: Integrated Periodic Structure Reference Materials[J]. Micromachines, 2023, 14(8): 1550. doi: 10.3390/mi14081550 [17] Koenders L, Bergmans R, Garnaes J, et al. Comparison on nanometrology: nano 2—step height[J]. Metrologia, 2003, 40(1A): 04001. doi: 10.1088/0026-1394/40/1A/04001 [18] VLSI Standards Incorporated. VLSI dimensional products[EB/OL]. http://www.vlsistandards.com/products. [19] 国家标准物质资源共享平台[EB/OL].https://www.ncrm.org.cn. [20] 张雅馨, 王琛英, 景蔚萱, 等. 亚50 nm台阶高度标准物质的可控制备及定值研究[J]. 仪器仪表学报, 2022, 43(11): 86-93. [21] Wang C Y, Yang S M, Lin Q J, et al. Nanostep Fabrication Using FIB Technology[J]. Journal of Advanced Material Research, 2013, 655: 842-846. [22] Yang S, Li C, Wang C, et al. A sub-50 nm three-step height sample for AFM calibration[J]. Measurement Science and Technology, 2014, 25(12): 125004. doi: 10.1088/0957-0233/25/12/125004 [23] 雷李华, 邹子英, 李源, 等. 纳米台阶标准样板的制备和表征[J]. 微纳电子技术, 2011, 48(09): 600-605. [24] 冯亚南, 李锁印, 韩志国, 等. 微纳米台阶标准的制备和评价[J]. 传感技术学报, 2022, 35(11): 1445-1450. [25] 王琛英, 杨树明, 李常胜, 等. 基于原子层沉积的Al2O3薄膜微观形貌研究[J]. 稀有金属材料与工程, 2015, 44(12): 3078-3082. [26] Danzebrink H U, Koenders L, Wilkening G, et al. Advances in scanning force microscopy for dimensional metrology[J]. CIRP annals, 2006, 55(2): 841-878. doi: 10.1016/j.cirp.2006.10.010 [27] 施玉书, 李伟, 余茜茜, 等. 基于原子力显微术的5 nm台阶高度标准物质溯源与定值技术研究[J]. 仪器仪表学报, 2020, 41(3): 79-86. [28] 国家质量监督检验检疫总局. 产品几何量技术规范(GPS) 表面结构: 轮廓法, 第1部分: 实物测量标准: GB/T 19067.1-2003/ISO 5436.1: 20007[S]. 北京: 中国标准出版社, 2003. [29] 国家质量监督检验检疫总局. 扫描探针显微镜校准规范: JJF 1351-2012[S]. 北京: 中国质检出版社, 2012. [30] 国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国质检出版社, 2012.