留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内禀硅晶格常数的22纳米线宽标准器研制

王芳 施玉书 张树

王芳,施玉书,张树. 内禀硅晶格常数的22纳米线宽标准器研制[J]. 计量科学与技术,2024, 68(2): 10-15, 59 doi: 10.12338/j.issn.2096-9015.2023.0150
引用本文: 王芳,施玉书,张树. 内禀硅晶格常数的22纳米线宽标准器研制[J]. 计量科学与技术,2024, 68(2): 10-15, 59 doi: 10.12338/j.issn.2096-9015.2023.0150
WANG Fang, SHI Yushu, ZHANG Shu. Development of a 22 Nano Line Width Standard Based on Intrinsic SiliconLattice Constants[J]. Metrology Science and Technology, 2024, 68(2): 10-15, 59. doi: 10.12338/j.issn.2096-9015.2023.0150
Citation: WANG Fang, SHI Yushu, ZHANG Shu. Development of a 22 Nano Line Width Standard Based on Intrinsic SiliconLattice Constants[J]. Metrology Science and Technology, 2024, 68(2): 10-15, 59. doi: 10.12338/j.issn.2096-9015.2023.0150

内禀硅晶格常数的22纳米线宽标准器研制

doi: 10.12338/j.issn.2096-9015.2023.0150
基金项目: 国家重点研发计划(2021YFA1202801)。
详细信息
    作者简介:

    王芳(1989-),中国计量科学研究院助理研究员,研究方向:纳米计量,邮箱:wangfang@nim.ac.cn

    通讯作者:

    施玉书(1982-),中国计量科学研究院副研究员,研究方向:微纳计量技术、精密仪器测量,邮箱:shiys@nim.ac.cn

  • 中图分类号: TB921

Development of a 22 Nano Line Width Standard Based on Intrinsic SiliconLattice Constants

  • 摘要: 纳米线宽作为典型纳米几何特征参量之一,其量值准确性对于先进制造等领域尤为重要。随着纳米尺度向着极小尺寸发展,测量精度要求达到亚纳米级,这给纳米线宽的精确测量带来了新的挑战。2018年第26届国际计量大会提出使用硅{220}晶面间距作为米定义的复现方式,这为原子尺度纳米线宽计量技术提供了新的思路与方法。基于多层膜沉积技术制备了22 nm内禀硅晶格的线宽标准器,采用高分辨透射电子显微镜,以标准器中的硅晶格常数为标尺实现对纳米线宽的直接测量,测量不确定度优于1 nm。
  • 图  1  纳米线宽结构示意图:(a)线宽特征值,(b)线宽结构内部为单晶硅,(c)线宽结构外部为单晶硅

    Figure  1.  Nano line width structure: (a) characteristic values, (b) monocrystalline silicon inside the structure, and (c) monocrystalline silicon outside the structure

    图  2  薄膜沉积设计图

    Figure  2.  Thin film deposition design diagram

    图  3  线宽标准器实物图及其扫描电子显微图像

    Figure  3.  Physical image of the nano line width standard and its scanning electron microscopy image

    图  4  线宽的透射电子显微图像

    Figure  4.  Transmission electron microscope image of the nano line width

    图  5  纳米线宽结构及其硅晶格的高分辨透射电子显微图像

    Figure  5.  High-resolution transmission electron microscope images of the nano line width structure and its silicon lattice

    图  6  半强度方法定位线宽边界

    Figure  6.  Half intensity method for locating line width boundaries

    图  7  线宽轮廓曲线

    Figure  7.  Line width contour curve

    图  8  半高宽处所占像素数测量

    Figure  8.  Measurement of pixels at the mid-line width

    图  9  硅晶面间距像素测量过程图

    Figure  9.  Process diagram for measuring pixels of silicon crystal plane spacing

    表  1  高放大倍率对应的视场大小

    Table  1.   Field size corresponding to high magnification

    高放大倍率 视场大小
    285 k 74.375 nm×74.375 nm
    400 k 53.155 nm×53.155 nm
    450 k 47.847 nm×47.847 nm
    690 k 31.572 nm×31.572 nm
    下载: 导出CSV
  • [1] CCL. Mise en pratique for the definition of the metre in the SI [R]. 2019.
    [2] CCL-GD-MeP-1. Recommendations of CCL/WG-N on: Realization of the SI metre using silicon lattice parameter and x-ray interferometry for nanometre and sub-nanometre scale applications in dimensional nanometrology [R]. 2019.
    [3] CCL-GD-MeP-2. Recommendations of CCL/WG-N on: Realization of SI metre using silicon lattice and Transmission Electron Microscopy for Dimensional Nanometrology[R]. 2019.
    [4] Wu Z R, Cai Y N, Wang X R, et al. Amorphous Si critical dimension structures with direct Si lattice calibration[J]. Chinese Physics B, 2019, 28(3): 030601. doi: 10.1088/1674-1056/28/3/030601
    [5] Hoefflinger B. Chips 2020 [M]. The Frontiers Collection. Springer, Berlin, Heidelberg, 2011: 161-174.
    [6] E Massa, G Mana, U Kuetgens, et al. Measurement of the lattice parameter of a silicon crystal[J]. New Journal of Physics, 2009, 11: 053013. doi: 10.1088/1367-2630/11/5/053013
    [7] E Massa, G Mana, U Kuetgens, et al. Measurement of the {220} lattice-plane spacing of a 28Si x-ray interferometer[J]. Metrologia, 2011, 48: S37-S43. doi: 10.1088/0026-1394/48/2/S06
    [8] Luca Ferroglio, Giovanni Mana, and Enrico Massa. Si lattice parameter measurement by centimeter X-ray interferometry[J]. OPTICS EXPRESS, 16(21): 16877-16888.
    [9] E Massa, G Mana, and U Kuetgens. Comparison of the INRIM and PTB lattice-spacing standards[J]. Metrologia, 2009, 46(3): 249. doi: 10.1088/0026-1394/46/3/011
    [10] A. Bergamin, G. Cavagnero, G. Mana, et al. Scanning X-ray interferometry and the silicon lattice parameter: towards 10−9 relative uncertainty?[J]. THE EUROPEAN PHYSICAL JOURNAL B, 1999, 9: 225-232.
    [11] 崔建军. 基于Fabry-Perot干涉与原子晶格间距的微位移计量及溯源研究 [D]. 天津: 天津大学, 2014.
    [12] Ernest G K, Szabo C I, Cline J P, et al. The lattice spacing variability of intrinsic float-zone silicon[J]. Journal of Research of the National Institute of Standards and Technology, 2017, 122: 24. doi: 10.6028/jres.122.024
    [13] Gaoliang Dai, XiukunHu, and Johannes Degenhardt. Bottom-up approach for traceable calibration of tip geometry of stylus profilometer[J]. Surface Topography:Metrology and Properties, 2022, 10: 015018. doi: 10.1088/2051-672X/ac4f36
    [14] Keita Kobayashi, Ichiko Misumi, and Kazuhiro Yamamoto. Experimental evaluation of uncertainty in sub- nanometer metrology using transmission electron microscopy due to magnification variation[J]. Measurement Science and Technology, 2021, 32: 095011. doi: 10.1088/1361-6501/ac03e4
    [15] Harald Bosse, Bernd Bodermann, Gaoliang Dai, et al. Challenges in naonometroloy: high precision measurement of position size[J]. Technisches Messen, 2015, 82(7-8): 346-358. doi: 10.1515/teme-2015-0002
    [16] R. G. Dixson, R. A. Allen, W. F. Guthrie, et al. Traceable calibration of critical-dimension atomic force microscope linewidth measurements with nanometer uncertainty[J]. Journal of Vacuum Science & Technology B, 2005, 23(6): 3028-3032.
    [17] Gaoliang Dai, Kai Hahm, Frank Scholze. Measurements of CD and sidewall profile of EUV photomask structures using CD-AFM and tilting-AFM[J]. Measurement Science and Technology, 2014, 25: 044002. doi: 10.1088/0957-0233/25/4/044002
    [18] Dai G L, Zhu F, Heidelmann M, et al. Development and characterisation of a new line width reference material[J]. Measurement Science and Technology, 2015, 26: 115006. doi: 10.1088/0957-0233/26/11/115006
    [19] Guthrie W F, Dixson R G, Allen R, et al. RM 8111: development of a prototype linewidth standard[J]. Journal of Research of the National Institute of Standards and Technology, 2006, 111(3): 187-203. doi: 10.6028/jres.111.016
    [20] Orji N G, Dixson R G, Garcia-Gutierrez D I, et al. TEM calibration methods for critical dimension standards[J]. Metrology, Inspection, and Process Control for Microlithography XXI, 2007, 6518: 651810. doi: 10.1117/12.713368
    [21] Dai G L, Hahm K, Bosse H, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017, 28: 065010. doi: 10.1088/1361-6501/aa665b
    [22] 高思田, 李琪, 施玉书, 等. 我国微纳几何量计量技术的研究进展[J]. 仪器仪表学报, 2017, 38(8): 1822-1829. doi: 10.3969/j.issn.0254-3087.2017.08.001
    [23] 施玉书, 李伟, 余茜茜, 等. 基于原子力显微术的5 nm台阶高度标准物质溯源与定值技术研究[J]. 仪器仪表学报, 2020, 41(3): 79-86.
    [24] Yushu Shi, Wei Li, Sitian Gao, et al. Atomic force microscope scanning head with 3-dimensional orthogonal scanning to eliminate the curved coupling[J]. Ultramicroscopy, 2018, 190: 77-80. doi: 10.1016/j.ultramic.2018.03.020
    [25] Wang F, Shi Y S, Li W, et al. Characterization of a nano line width reference material based on metrological scanning electron microscope[J]. Chin. Phys. B, 2022, 31(5): 050601. doi: 10.1088/1674-1056/ac3225
    [26] Fang Wang, Yushu Shi, Shu Zhang, et al. Automatic Measurement of Silicon Lattice Spacings in High-Resolution ransmission Electron Microscopy Images Through 2D Discrete Fourier Transform and Inverse Discrete Fourier Transform[J]. Nanomanufacturing and Metrology, 2022, 2: 119-126.
    [27] Joachim Mayer, Lucille A. Giannuzzi, Takeo Kamino, et al. TEM Sample Preparation and FIB-Induced Damage[J]. MRS BULLETIN, 2007, 32: 400-407. doi: 10.1557/mrs2007.63
    [28] 周伟敏, 徐南华. 聚焦离子束( FIB) 快速制备透射电镜样品[J]. 电子显微学报, 2004, 23(4): 513. doi: 10.3969/j.issn.1000-6281.2004.04.211
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  57
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-18
  • 录用日期:  2023-06-26
  • 修回日期:  2023-12-20
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-02-18

目录

    /

    返回文章
    返回