Measurement Technique for Pulsatile Microflow Based on Poiseuille’s Law
-
摘要: 为了解决高压工况下脉动微流量的测量问题,结合差压变送器耐压高、响应快等特点,基于泊肃叶定律,利用差压信号对脉动微流量进行间接测量。设计了脉动流路中差压值测量方案,通过数值积分与时间修正的方法,将差压信号换算的累计质量与天平静态累计质量进行比对,有效地解决了以往天平称重与秒表计时方法测量精度低的问题。结合天平动态采样对差压法的瞬时流量进行验证,数据结果表明,在具有脉动特征的0.2~0.5 mL/min微流量范围内,采用差压法测量平均流量的误差不高于±0.5%,测量瞬时流量的误差不高于±1.5%,满足相关设备的流量测量精度需求,同时解决了市面上微流量传感器售价高、使用时耐压值有限的问题。Abstract: To address the challenge of measuring pulsatile microflow under high-pressure conditions in the realm of physical and chemical analysis instrumentation, a methodology grounded on the Hagen-Poiseuille law has been devised. This methodology leverages the differential pressure signal for indirect measurement, capitalizing on the traits of high pressure endurance and swift response manifested by the differential pressure transducer. A scheme for measuring differential pressure values within the pulsatile flow pathway has been designed. Employing numerical integration alongside dual time correction, the accumulated mass derived from differential pressure signals was juxtaposed against the static accumulated mass from a balance to validate the measurement accuracy. This effectively ameliorates the erstwhile issue of low accuracy found in balance weighing and stopwatch timing methods. The differential method’s instantaneous flow rate was corroborated through dynamic sampling functions of a balance. Data outcomes denote that within the pulsatile characteristic range of 0.2 to 0.5 mL/min, the error in measuring average flow rate via the differential method does not exceed ±0.5%, and the error in measuring instantaneous flow rate does not surpass ±1.5%. This accords with the flow measurement accuracy requisites of relevant instruments, and concurrently mitigates the issues of exorbitant pricing of microflow sensors and limited pressure resistance during usage.
-
表 1 不同修正方法的偏差
Table 1. Deviation of different correction methods
修正
方法累计
质量/g测量
时间/s修正后
总质量/g偏差/% A.等比 2.022791 293.80 2.023479 0.0001 A.周期 2.023481 B.等比 0.825915 240.80 0.826258 0.009 B.周期 0.826191 表 2 差压法测量平均流量的误差
Table 2. Error in measuring average flow rate by differential pressure method
测点流量/
(mL·min−1)$\Delta $m/g ($\Delta $mP+$\Delta $m'P)/g 相对
误差/%0.5 0.507774 0.508268 0.10 0.4 0.407596 0.408132 0.13 0.3 0.306562 0.307190 0.20 0.2 0.204958 0.205752 0.39 表 3 差压法测量瞬态流量的误差
Table 3. Error in measuring instantaneous flow rate by differential pressure method
测点流量/(mL·min−1) 相对误差/% 0.5 −0.08 0.4 0.59 0.3 0.86 0.2 1.42 -
[1] 蔡武昌. 微小流量仪表性能及其应用[J]. 石油化工自动化, 2009, 4(4): 1-5. doi: 10.3969/j.issn.1007-7324.2009.04.001 [2] 阮晓柯. 3L液体小流量标准装置的研制[D]. 杭州: 中国计量大学, 2016. [3] 田亚冠, 程佳. 150mL活塞式液体微小流量计量标准装置的研究[J]. 传感器与微系统, 2011, 30(12): 21-30. doi: 10.3969/j.issn.1000-9787.2011.12.007 [4] 才海男, 周兆英. 一种用于微小流量测量的热线式流量传感器的研究[J]. 计量技术, 1998(8): 13-16. [5] 全国物理化学计量技术委员会. 离子色谱仪: JJG 823-2014 [S]. 北京: 中国标准出版社, 2014. [6] 全国物理化学计量技术委员会. 液相色谱仪检定规程: JJG 705-2014 [S]. 北京: 中国标准出版社, 2014. [7] MENG T, ZHOU C, LIU L, et al. Establishment of micro liquid flow facility at NIM[C]. Chongqing, 2022. [8] 胡纯, 樊尚春, 郑德智. 微流量测量方法及其技术的发展[J]. 计量技术, 2015, 35(1): 1-8. [9] 滕鹏飞. 液体微小流量计量方法和标准装置的研究[D]. 杭州: 中国计量大学, 2013. [10] 刘莉, 周昶, 高峰, 等. 微小液流量装置技术发展研究[J]. 计量学报, 2020, 41(12): 1-6. [11] Yeh T T , Espina P I , Mattingly G E , et al. An Uncertainty Analysis of a NIST Hydrocarbon Liquid Flow Calibration Facility[J]. American Society of Mechanical Engineers, 2004, 7: 575-586. [12] WANG L, NIU Y Z. Calibration of compact prover for bohai youyi[J]. Inner Mongolia Petrochemical Industry, 2010(17): 59-60. [13] Ruiu V, Hemandez N C. Uncertainty analysis in piston prover calibration [C]. Salvador, 2000. [14] David C, Claudel P. Novel water flow facility in France range extension to low flow rates (10000mL/h down to 1mL/h)[J]. MAPAN, 2011, 26(3): 203-209. doi: 10.1007/s12647-011-0019-0 [15] 杨三东, 潘琪, 王风云, 等. 高效液相色谱输液泵流量脉动的研究[J]. 计量学报, 2017, 38(4): 513-516. doi: 10.3969/j.issn.1000-1158.2017.04.27 [16] 潘琪. 液相色谱仪关键性能评价方法研究及应用[D]. 南京: 南京理工大学, 2015. [17] 张聪, 杨三东, 李乃杰, 等. 流体微/纳流量测量方法的研究[J]. 分析仪器, 2014, 5: 7-12. doi: 10.3969/j.issn.1001-232x.2014.01.002 [18] 骆科技, 董小杏, 刘彪杰, 等. 基于遗传算法的凸轮柱塞泵流量脉动分析及优化[J]. 机械研究与应用, 2022, 5(35): 1-4. [19] 杨三东. 基于新型稳流微/纳升流量泵的液相色谱系统构建与应用研究[D]. 南京: 南京理工大学, 2019. [20] OKI J, KUGA Y, OGATA Y, et al. Stereo and time-resolved PIV for measuring pulsatile exhaust flow from a motorized engine[J]. Journal of Fluid Science and Technology, 2018, 13(1): 1-12. [21] RYAN T. Design of a pulsatile pumping system for cardiovascular flow PIV experiment[D]. Victoria : University of Victoria, 2007. [22] O'DONOGHUE T, DAVIES A G, BHAWANIN M, et al. Measurement and prediction of bottom boundary layer hydrodynamics under modulated oscillatory flows[J]. Coastal Engineering, 2021, 169(7): 1-19. [23] 李战华, 吴健康, 胡国庆, 等. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012: 32-34. [24] 邵东亮, 朱金堂, 孔伟. 液体微流量计量方法研究[J]. 石油仪器, 2005, 19(2): 69-70,72. [25] 蒋婷, 滕召胜, 顾红艳, 等. 基于EMD与分批估计的动态称量快速融合方法[J]. 仪器仪表学报, 2015, 36(6): 1406-1414. doi: 10.3969/j.issn.0254-3087.2015.06.027 [26] 李海洋, 陈琪, 姚新红, 等. 高精准度静态质量法液体流量标准装置及其不确定度评定[J]. 计量与测试技术, 2020, 17(5): 65-68. [27] 孙新新, 邓鹏波. 基于静态质量法的微小水流量标准装置设计与试验[J]. 计量与测试技术, 2022, 49(5): 17-19. [28] Tanaka M, Girard G, Davis R A, et al. Recommended table for the density of water between 0℃ and 40℃ based on recent experimental reports[J]. Metrologia, 2001, 38(4): 301-309. doi: 10.1088/0026-1394/38/4/3 [29] 徐浩铭, 王金涛, 刘翔, 等. 基于液体静力称量法的纯水密度测量[J]. 计量学报, 2023, 44(1): 1-5. doi: 10.3969/j.issn.1000-1158.2023.01.01 [30] ZAMIR M . The physics of pulsatile flow[M]. New York: Springer Verlag New York Inc , 2000: 81-83.