An Instrument for Micro-Newton Force Measurement with Uncertainty in E-5
-
摘要: 微牛级力值的测量技术广泛应用于空间探测、生物材料分析与微纳制造等领域的研究。基于静电力天平原理,设计并搭建了一套用于微牛级力值测量的装置,针对前期研究中测量装置的铅垂向刚度过大和圆柱形电容器同轴度对准误差较大的问题,通过优化设计四边形柔性枢轴的结构降低了系统在铅垂向的刚度,提升了静电力天平的力值分辨力,并基于圆柱形电容器的电容特性实现了对内、外电极同轴度的校准。经过实验测量,设计的微牛级力值计量装置具备了将100 μN力值的测量不确定度控制在E-5量级的能力。此项研究成果将为微牛级力值测量基准装置的建立和微牛级力值量传方法的研究做出重要贡献。Abstract: Micro-newton force measurement technology, extensively employed in the domains of space exploration, bio-materials analysis, and micro-nano manufacturing, plays a pivotal role. This study presents a device constructed based on the principle of electrostatic force balance, aimed at measuring micro-newton force values. Addressing the issues encountered in preliminary research, such as excessive stiffness in the vertical direction and significant alignment error of cylindrical capacitors, structural optimization of quadrilateral flexible pivots was undertaken to diminish system stiffness vertically, thereby enhancing the force resolution of the electrostatic force balance. Additionally, calibration of the concentricity of the inner and outer electrodes was achieved based on the capacitance characteristics of cylindrical capacitors. Experimental assessments revealed that the devised micro-newton force measurement device adeptly confines the measurement uncertainty of 100 μN force values to the E-5 level. The outcomes of this research are poised to significantly contribute to the establishment of micro-newton force measurement standard devices and further research on micro-newton force measurement methodologies.
-
表 1 10 mg砝码质量与重力加速度的校准结果
Table 1. Calibration results of 10 mg weight with gravitational acceleration
砝码质量 重力加速度 重力值 10.0019 mg 9.8012 m/s2 98.0306 μN 表 2 10 mg砝码力值测量不确定度
Table 2. Uncertainty budget in the measurement of 10 mg weight force
不确定度来源 类别 不确定度分量 电容电桥 B 5.00E-7 激光干涉仪 B 1.00E-8 电压源 B 2.50E-5 力值分辨力 B 7.20E-6 电容梯度重复性 A 1.72E-5 同轴度 B 1.25E-5 力值重复性 A 6.24E-5 10 mg砝码力值测量的合成标准不确定度(k=1) 7.09E-5 -
[1] DANDAVINO S, ATAMAN C, RYAN C N, et al. Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft[J]. Journal of Micromechanics and Microengineering, 2014, 24(7): 075011. doi: 10.1088/0960-1317/24/7/075011 [2] SONI J, ROY S. Design and characterization of a nano-Newton resolution thrust stand[J]. Review of Scientific Instruments, 2013, 84(9): 095103. doi: 10.1063/1.4819252 [3] WEI Y, XU Q, BEUTEL T, et al. Cell manipulation system based on a self-calibrating silicon micro force sensor providing capillary status monitoring[J]. IEEE Sensors Journal, 2012, 12(10): 3075-3081. doi: 10.1109/JSEN.2012.2206804 [4] PRUCHNIK B, ORłOWSKA K, ŚWIADKOWSKI B, et al. Microcantilever-based current balance for precise measurement of the photon force[J]. Scientific Reports, 2023, 13(1): 466. doi: 10.1038/s41598-022-27369-3 [5] MARTÍNEZ-MARTÍN D, FLäSCHNER G, GAUB B, et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells[J]. Nature, 2017, 550(7677): 500-505. doi: 10.1038/nature24288 [6] DANZMANN K. LISA mission overview[J]. Advances in Space Research, 2000, 25(6): 1129-1136. doi: 10.1016/S0273-1177(99)00973-4 [7] WANG A, WU H, TANG H, et al. Development and testing of a new thrust stand for micro-thrust measurement in vacuum conditions[J]. Vacuum, 2013, 91: 35-40. doi: 10.1016/j.vacuum.2012.10.013 [8] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测 “太极计划” 及 “太极 1 号” 在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10. [9] GAO W, LIU C, LIU T, et al. An area-variant type MEMS capacitive sensor based on a novel bionic swallow structure for high sensitive nano-indentation measurement[J]. Measurement, 2022, 200: 111634. doi: 10.1016/j.measurement.2022.111634 [10] PAYNE C J, RAFII-TARI H, MARCUS H J, et al. Hand-held microsurgical forceps with force-feedback for micromanipulation[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 284-289. [11] 李正坤, 白洋, 许金鑫, 等. 中国计量院在千克重新定义方面的工作和贡献[J]. 计量技术, 2019(5): 28-33. [12] KIM M S, CHOI J H, KIM J H, et al. Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods[J]. Measurement, 2010, 43(4): 520-526. doi: 10.1016/j.measurement.2009.12.020 [13] GEORGAKAKI D, MITRIDIS S, SAPALIDIS A A, et al. Calibration of tapping AFM cantilevers and uncertainty estimation: Comparison between different methods[J]. Measurement, 2013, 46(10): 4274-4281. doi: 10.1016/j.measurement.2013.08.010 [14] 陈庆超. AFM 微悬臂梁法向弹性系数标定技术[D]. 天津: 天津大学, 2012. [15] BURNHAM N A, CHEN X, HODGES C S, et al. Comparison of calibration methods for atomic-force microscopy cantilevers[J]. Nanotechnology, 2002, 14(1): 1. [16] STAMBAUGH C, SHAKEEL H, LITORJA M, et al. Linking mass measured by the quartz crystal microbalance to the SI[J]. Metrologia, 2020, 57(2): 025002. doi: 10.1088/1681-7575/ab54a5 [17] JABBOUR Z J, YANIV S L. The kilogram and measurements of mass and force[J]. Journal of Research of the National Institute of Standards and Technology, 2001, 106(1): 25. doi: 10.6028/jres.106.003 [18] STOCK M. Watt Balance Experiments for the Determination of the Planck Constant and the Redefinition of the Kilogram[J]. Metrologia, 2013, 50(1): R1-R16. doi: 10.1088/0026-1394/50/1/R1 [19] 张忠华, 李世松. 质量量子标准研究的新进展[J]. 仪器仪表学报, 2013, 34(9): 1921-1926. doi: 10.19650/j.cnki.cjsi.2013.09.001 [20] 白洋, 鲁云峰, 廖福剑, 等. 能量天平激光干涉测量系统闲区长度测量方法研究[J]. 计量科学与技术, 2022, 66(4): 34-39. [21] GORDEN A S, JULIAN S, JOHN A K, et al. Milligram mass metrology using an electrostatic force balance[J]. Metrologia, 2016, 53(2): A86-A94. [22] SCHLAMMINGER S, HADDAD D, SEIFERT F, et al. Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology[J]. Metrologia, 2014, 51(2): S15. doi: 10.1088/0026-1394/51/2/S15 [23] STEINER R L, WILLIAMS E R, LIU R, et al. Uncertainty Improvements of the NIST Electronic Kilogram[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 592-596. doi: 10.1109/TIM.2007.890590 [24] SIENKNECHT V, FUNCK T. Realization of the SI unit volt by means of a voltage balance[J]. Metrologia, 1986, 22(3): 209. doi: 10.1088/0026-1394/22/3/018 [25] NESTEROV V, MUELLER M, FRUMIN L L, et al. A new facility to realize a nanonewton force standard based on electrostatic methods[J]. Metrologia, 2009, 46(3): 277. doi: 10.1088/0026-1394/46/3/016 [26] LEACH R K, CLAVERLEY J, GIUSCA C, et al. Advances in engineering nanometrology at the National Physical Laboratory[J]. Measurement Science and Technology, 2012, 23(7): 074002. doi: 10.1088/0957-0233/23/7/074002 [27] KIM M S, PRATT J R. SI traceability: Current status and future trends for forces below 10 microNewtons[J]. Measurement, 2010(43): 169-182. [28] 刘明, 林玉池, 郑叶龙, 等. 利用静电场原理复现微纳力值的实验研究[J]. 传感技术学报, 2012, 25(1): 17-25. [29] 张国强, 赵美蓉, 蔡雪. 电容法微力测量中轴偏对电容梯度的影响[J]. 电子测量与仪器学报, 2015, 29(1): 14-20. doi: 10.13382/j.jemi.2015.01.002 [30] 王越, 白洋, 李正坤. 能量天平高灵敏度力传感装置研究[J]. 计量科学与技术, 2023, 67(4): 11-17. doi: 10.12338/j.issn.2096-9015.2022.0288