留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内外数字孪生研究的热点主题与演进趋势——基于CiteSpace的知识图谱分析

肖淑南 郭晓剑

肖淑南,郭晓剑. 国内外数字孪生研究的热点主题与演进趋势——基于CiteSpace的知识图谱分析[J]. 计量科学与技术,2023, 67(8): 16-28, 74 doi: 10.12338/j.issn.2096-9015.2023.0215
引用本文: 肖淑南,郭晓剑. 国内外数字孪生研究的热点主题与演进趋势——基于CiteSpace的知识图谱分析[J]. 计量科学与技术,2023, 67(8): 16-28, 74 doi: 10.12338/j.issn.2096-9015.2023.0215
XIAO Shunan, GUO Xiaojian. Emerging Trends and Hot Topics in Digital Twin Research Globally: A CiteSpace Knowledge Graph Analysis[J]. Metrology Science and Technology, 2023, 67(8): 16-28, 74. doi: 10.12338/j.issn.2096-9015.2023.0215
Citation: XIAO Shunan, GUO Xiaojian. Emerging Trends and Hot Topics in Digital Twin Research Globally: A CiteSpace Knowledge Graph Analysis[J]. Metrology Science and Technology, 2023, 67(8): 16-28, 74. doi: 10.12338/j.issn.2096-9015.2023.0215

国内外数字孪生研究的热点主题与演进趋势——基于CiteSpace的知识图谱分析

doi: 10.12338/j.issn.2096-9015.2023.0215
基金项目: 江西省省级课题“基于多维视角的智慧建筑全过程评价体系构建研究”(Hk20211003)。
详细信息
    作者简介:

    肖淑南(1999-),江西理工大学经济管理学院硕士研究生,研究方向:数字孪生、智能建造,邮箱:2809652042@qq.com

    通讯作者:

    郭晓剑(1974-),江西理工大学经济管理学院副教授,研究方向:数字孪生、智能建造,邮箱:9120040023@jxust.edu.cn

  • 中图分类号: TB9

Emerging Trends and Hot Topics in Digital Twin Research Globally: A CiteSpace Knowledge Graph Analysis

  • 摘要: 为较全面的了解国内外数字孪生领域的研究现状、热点与演进趋势,基于文献计量学,将CNKI与Web of Science数据库作为数据源,运用CiteSpace构建国内外数字孪生领域知识图谱并分析其优势、不足及未来趋势,最后结合分析结果与相关文献提出展望。结果表明:1)国内外数字孪生研究热度不断攀升,发文量处于持续上升期。2)目前国内外数字孪生领域核心作者群均尚未形成,国外研究机构合作率相对国内来说更高,但国内研究机构类型相对国外更加广泛,我国在数字孪生研究领域发文量已具有明显优势,但影响力有待提高。3)国内外数字孪生领域研究前沿有一定相似性,研究热点集中于智能制造领域应用、关键技术探索及数字孪生在其他领域的智能应用。
  • 图  1  CNKI和WOS中数字孪生领域年发文量变化

    Figure  1.  Annual publication trends in digital twin research in CNKI and WOS

    图  2  CNKI数字孪生研究作者合作网络图谱

    Figure  2.  Author collaboration network in CNKI's digital twin research

    图  3  WOS数字孪生研究作者合作网络图谱

    Figure  3.  Author collaboration network in WOS's digital twin research

    图  4  CNKI数字孪生研究机构合作网络图谱

    Figure  4.  Institutional collaboration network in CNKI's digital twin research

    图  5  WOS数字孪生研究机构合作网络图谱

    Figure  5.  Institutional collaboration network in WOS's digital twin research

    图  6  数字孪生研究国家合作网络图谱

    Figure  6.  National collaboration network in digital twin research

    图  7  CNKI数字孪生研究关键词时间线聚类图谱

    Figure  7.  Timeline cluster graph of keywords in CNKI's digital twin research

    图  8  WOS数字孪生研究关键词时间线聚类图谱

    Figure  8.  Timeline cluster graph of keywords in WOS's digital twin research

    表  1  数字孪生研究领域发文量前10国家

    Table  1.   Top 10 countries by publication count in digital twin research

    序号国家发文量(篇)中心性
    1PEOPLES R CHINA(中国)9080.09
    2USA(美国)4120.15
    3GERMANY(德国)2730.05
    4ENGLAND(英国)2400.29
    5ITALY(意大利)2070.05
    6SPAIN(西班牙)1460.09
    7SOUTH KOREA(韩国)1350.02
    8FRANCE(法国)1090.23
    9AUSTRALIA(澳大利亚)1020.03
    10SWEDEN(瑞典)960.03
    下载: 导出CSV

    表  2  CNKI数字孪生研究突现词top12

    Table  2.   Top 12 emerging terms in CNKI's digital twin research

    突现词 开始时间 结束时间 强度 2017 - 2022
    数字孪生车间 2017 2018 1.77
    数据融合 2017 2018 1.41
    油气管道 2018 2020 1.55
    创新设计 2019 2020 1.98
    五维模型 2019 2021 1.29
    教育应用 2019 2021 1.63
    数据驱动 2020 2021 1.06
    人工智能 2020 2022 2.58
    物联网 2020 2022 1.69
    智能船舶 2020 2022 1.08
    关键技术 2021 2022 1.72
    机器学习 2021 2022 2.33
    城市治理 2021 2022 1.94
    下载: 导出CSV

    表  3  WOS数字孪生研究突现词top12

    Table  3.   Top 12 emerging terms in WOS's digital twin research

    突现词 开始时间 结束时间 强度 2017 - 2022
    industry 4.0 2017 2020 6.56
    smart manufacturing 2017 2019 5.23
    big data 2017 2019 4.34
    cyber physical systems 2017 2020 3.96
    architecture 2018 2019 4.64
    cloud manufacturing 2018 2019 3.87
    genetic algorithm 2019 2020 4.12
    circular economy 2019 2022 3.47
    sustainable manufacturing 2019 2020 2.96
    mass customization 2020 2022 2.65
    data analysis 2020 2022 2.43
    asset management 2020 2022 2.36
    condition based maintenance 2020 2022 2.36
    下载: 导出CSV
  • [1] 周宏仁. 全球信息化发展的新阶段[J]. 计算机仿真, 2020, 37(8): 1-7.
    [2] Uhlemann T H J, Lehmann C, Steinhilper R. The digital twin: Realizing the cyber-physical production system for industry 4.0[J]. Procedia Cirp, 2017, 61: 335-340. doi: 10.1016/j.procir.2016.11.152
    [3] Kagermann H. Change through digitization—Value creation in the age of Industry 4.0[M]. Management of permanent change. Wiesbaden: Springer Fachmedien Wiesbaden, 2014: 23-45.
    [4] Semeraro C, Lezoche M, Panetto H, et al. Digital twin paradigm: A systematic literature review[J]. Computers in Industry, 2021, 130: 103469. doi: 10.1016/j.compind.2021.103469
    [5] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.
    [6] 刘妍. 数字孪生技术赋能下的传媒新业态[J]. 传播与版权, 2023(20): 57-59.
    [7] Jones D, Snider C, Nassehi A, et al. Characterising the Digital Twin: A systematic literature review[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 29: 36-52. doi: 10.1016/j.cirpj.2020.02.002
    [8] Rosen R , Wichert G V , Lo G , et al. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing[J]. IFAC-PapersOnLine, 2015, 48(3): 567-572.
    [9] Falekas G, Karlis A. Digital twin in electrical machine control and predictive maintenance: state-of-the-art and future prospects[J]. Energies, 2021, 14(18): 5933. doi: 10.3390/en14185933
    [10] Tuegel E J , Ingraffea A R , Eason T G , et al. Reengineering Aircraft Structural Life Prediction Using a Digital Twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 1687-5966.
    [11] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and US Air Force vehicles[C]. AIAA, 2012: 1818.
    [12] Grieves M. Digital twin: manufacturing excellence through virtual factory replication[J]. White paper, 2014, 1(2014): 1-7.
    [13] 张妮, 王婧媛. 基于CiteSpace的知识图谱国内外研究热点分析与趋势展望[J]. 情报资料工作, 2017, 216(3): 33-41.
    [14] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
    [15] 侯剑华, 胡志刚. CiteSpace软件应用研究的回顾与展望[J]. 现代情报, 2013, 33(4): 99-103.
    [16] 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9.
    [17] Price D J S. Little science, big science[M]. Columbia University Press, 1963.
    [18] 郭晓剑, 胡欢. 基于CiteSpace的我国建筑信息化知识图谱构建和分析[J]. 土木工程与管理学报, 2020, 37(6): 44-51.
    [19] 王晓红, 任晓菲. 基于CSSCI的我国隐性知识研究的文献计量分析[J]. 管理学报, 2018, 15(12): 1854-1861.
    [20] 杨天学, 杨哲, 张军平, 等. 国内外可降解膜研究热点及趋势对比分析[J]. 中国塑料, 2023, 37(1): 119-132.
    [21] 丁明春, 任恒. 国内外智慧图书馆研究之概念脉络、热点主题及未来展望——基于CiteSpace的信息可视化分析[J]. 图书馆理论与实践, 2022, 255(1): 99-107.
    [22] 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611.
    [23] 邵天巍, 魏巍, 张瑜, 等. 协同设计驱动的产品创新设计发展[J]. 机械设计, 2019, 36(6): 1-6.
    [24] 周有城, 武春龙, 孙建广, 等. 面向智能产品的数字孪生体功能模型构建方法[J]. 计算机集成制造系统, 2019, 25(6): 1392-1404.
    [25] 王强, 霍慧彬, 陈展, 等. 基于5G边缘计算的全场景智慧校园建设[J]. 中国高校科技, 2019(10): 94-96.
    [26] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
    [27] 李浩, 王昊琪, 程颖, 等. 数据驱动的复杂产品智能服务技术与应用[J]. 中国机械工程, 2020, 31(7): 757-772.
    [28] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统: 发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031.
    [29] 李震邦. 数字孪生技术与智能船舶发展[J]. 船舶工程, 2022, 44(S1): 543-547.
    [30] 毛子骏, 黄膺旭. 数字孪生城市: 赋能城市“全周期管理”的新思路[J]. 电子政务, 2021(8): 67-79.
    [31] Dembski F, Wössner U, Letzgus M, et al. Urban digital twins for smart cities and citizens: The case study of Herrenberg, Germany[J]. Sustainability, 2020, 12(6): 2307. doi: 10.3390/su12062307
    [32] Austin M, Delgoshaei P, Coelho M, et al. Architecting smart city digital twins: Combined semantic model and machine learning approach[J]. Journal of Management in Engineering, 2020, 36(4): 04020026. doi: 10.1061/(ASCE)ME.1943-5479.0000774
    [33] Eneyew D D, Capretz M A M, Bitsuamlak G T. Toward Smart-Building Digital Twins: BIM and IoT Data Integration[J]. IEEE Access, 2022, 10: 130487-130506. doi: 10.1109/ACCESS.2022.3229370
    [34] Preut A, Kopka J P, Clausen U. Digital twins for the circular economy[J]. Sustainability, 2021, 13(18): 10467. doi: 10.3390/su131810467
    [35] Keskin B, Salman B, Koseoglu O. Architecting a BIM-Based Digital Twin Platform for Airport Asset Management: A Model-Based System Engineering with SysML Approach[J]. Journal of Construction Engineering and Management, 2022, 148(5): 04022020. doi: 10.1061/(ASCE)CO.1943-7862.0002271
    [36] Nyholm S. Should a medical digital twin be viewed as an extension of the patient's body?[J]. Journal of Medical Ethics, 2021, 47(6): 401-402. doi: 10.1136/medethics-2021-107448
    [37] Venkatesh K P, Raza M M, Kvedar J C. Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation[J]. npj Digital Medicine, 2022, 5(1): 150. doi: 10.1038/s41746-022-00694-7
    [38] 梁卓识. 基于数字孪生的数字电网建设探究[J]. 科技创新与应用, 2023, 13(30): 193-196.
    [39] 周涵婷, 夏敏. 可信数字孪生及其在智能制造的应用: 机遇和挑战[J]. 厦门大学学报(自然科学版), 2022, 61(6): 992-1009.
    [40] Huang S, Wang G, Yan Y, et al. Blockchain-based data management for digital twin of product[J]. Journal of Manufacturing Systems, 2020, 54: 361-371. doi: 10.1016/j.jmsy.2020.01.009
    [41] 王昊琪, 李浩, 文笑雨, 等. 基于数字孪生的产品设计过程和工作量预测方法[J]. 计算机集成制造系统, 2022, 28(1): 17-30.
    [42] Zheng Y, Yang S, Cheng H. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 1141-1153. doi: 10.1007/s12652-018-0911-3
    [43] Zhu Z, Liu C, Xu X. Visualisation of the digital twin data in manufacturing by using augmented reality[J]. Procedia Cirp, 2019, 81: 898-903. doi: 10.1016/j.procir.2019.03.223
    [44] Zhao H, Liu J, Xiong H, et al. 3D visualization real-time monitoring method for digital twin workshop[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1432-1443.
    [45] 陈晓红, 刘飞香, 艾彦迪, 等. 面向智能制造的工业数字孪生关键技术特性[J]. 科技导报, 2022, 40(11): 45-54.
    [46] 苗田, 张旭, 熊辉, 等. 数字孪生技术在产品生命周期中的应用与展望[J]. 计算机集成制造系统, 2019, 25(6): 1546-1558.
    [47] Liu S, Bao J, Lu Y, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of manufacturing systems, 2021, 58: 180-195. doi: 10.1016/j.jmsy.2020.04.014
    [48] Duan J G, Ma T Y, Zhang Q L, et al. Design and application of digital twin system for the blade-rotor test rig[J]. Journal of Intelligent Manufacturing, 2023, 34(2): 753-769. doi: 10.1007/s10845-021-01824-w
    [49] 方荣辉, 杨淑群, 兰宁. 基于数字孪生的无人机巡航系统[J]. 制造业自动化, 2022, 44(11): 98-101.
    [50] Zhou X, Xu X, Liang W, et al. Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems[J]. IEEE Transactions on Industrial Informatics, 2021, 18(2): 1377-1386.
    [51] Kaarlela T, Pieskä S, Pitkäaho T. Digital twin and virtual reality for safety training[C]. IEEE, 2020: 000115-000120.
    [52] 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1-10.
    [53] He Y, Guo J, Zheng X. From surveillance to digital twin: Challenges and recent advances of signal processing for industrial internet of things[J]. IEEE Signal Processing Magazine, 2018, 35(5): 120-129. doi: 10.1109/MSP.2018.2842228
    [54] Fang X, Wang H, Liu G, et al. Industry application of digital twin: From concept to implementation[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(7-8): 4289-4312. doi: 10.1007/s00170-022-09632-z
    [55] 陈川, 陈岳飞, 曾麟, 等. 数字孪生在智能制造领域的应用及研究进展[J]. 计量科学与技术, 2020(12): 20-25.
    [56] 庞宇, 黄文焘, 吴骏, 等. 数字孪生技术在船舶综合电力系统中的应用前景与关键技术[J]. 电网技术, 2022, 46(7): 2456-2471.
    [57] Wang M, Feng S, Incecik A, et al. Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114512. doi: 10.1016/j.cma.2021.114512
    [58] Ngandjong A C, Lombardo T, Primo E N, et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-Ion battery manufacturing[J]. Journal of Power Sources, 2021, 485: 229320. doi: 10.1016/j.jpowsour.2020.229320
    [59] Wiragunarsa I M, Zuhal L R, Dirgantara T, et al. A particle interaction-based crack model using an improved smoothed particle hydrodynamics for fatigue crack growth simulations[J]. International Journal of Fracture, 2021, 229(2): 229-244. doi: 10.1007/s10704-021-00553-8
    [60] Azcarate S M, Ríos-Reina R, Amigo J M, et al. Data handling in data fusion: Methodologies and applications[J]. TrAC Trends in Analytical Chemistry, 2021, 143: 116355. doi: 10.1016/j.trac.2021.116355
    [61] Hu L, Nguyen N T, Tao W, et al. Modeling of cloud-based digital twins for smart manufacturing with MT connect[J]. Procedia manufacturing, 2018, 26: 1193-1203. doi: 10.1016/j.promfg.2018.07.155
    [62] Lin T Y, Shi G, Yang C, et al. Efficient container virtualization-based digital twin simulation of smart industrial systems[J]. Journal of cleaner production, 2021, 281: 124443. doi: 10.1016/j.jclepro.2020.124443
    [63] Min Q, Lu Y, Liu Z, et al. Machine learning based digital twin framework for production optimization in petrochemical industry[J]. International Journal of Information Management, 2019, 49: 502-519. doi: 10.1016/j.ijinfomgt.2019.05.020
    [64] Shen W, Hu T, Zhang C, et al. Secure sharing of big digital twin data for smart manufacturing based on blockchain[J]. Journal of Manufacturing Systems, 2021, 61: 338-350. doi: 10.1016/j.jmsy.2021.09.014
    [65] Liu J, Yeoh W, Qu Y, et al. Blockchain-Based Digital Twin for Supply Chain Management: State-of-The-Art Review and Future Research Directions[J]. Available at SSRN 4113933, 2022, 4: 1-36.
    [66] 吴志强, 王坚, 李德仁, 等. 智慧城市热潮下的“冷”思考学术笔谈[J]. 城市规划学刊, 2022(2): 1-11.
    [67] Lu Q, Chen L, Li S, et al. Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings[J]. Automation in Construction, 2020, 115: 103183. doi: 10.1016/j.autcon.2020.103183
    [68] Angjeliu G, Coronelli D, Cardani G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality[J]. Computers & Structures, 2020, 238: 106282.
    [69] 陶红, 张振刚. 比较分析视域下广州建设数字孪生城市的对策研究[J]. 科技管理研究, 2023, 43(9): 72-81.
    [70] Ahmadian H, Mageswaran P, Walter B A, et al. A digital twin for simulating the vertebroplasty procedure and its impact on mechanical stability of vertebra in cancer patients[J]. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38(6): e3600. doi: 10.1002/cnm.3600
    [71] Coorey G, Figtree G A, Fletcher D F, et al. The health digital twin: advancing precision cardiovascular medicine[J]. Nature Reviews Cardiology, 2021, 18(12): 803-804. doi: 10.1038/s41569-021-00630-4
    [72] 陈岳飞, 王思思, 田明棋, 等. 数字孪生技术在医疗健康领域的应用及研究进展[J]. 计量科学与技术, 2021, 65(10): 6-9. doi: 10.12338/j.issn.2096-9015.2021.0050
    [73] Tröbinger M, Costinescu A, Xing H, et al. A dual doctor-patient twin paradigm for transparent remote examination, diagnosis, and rehabilitation[C]. IEEE, 2021: 2933-2940.
    [74] Dang Z, Yang Q, Deng Z, et al. Digital Twin-Based Skill Training With a Hands-On User Interaction Device to Assist in Manual and Robotic Ultrasound Scanning[J]. IEEE Journal of Radio Frequency Identification, 2022, 6: 787-793. doi: 10.1109/JRFID.2022.3205049
    [75] 方卿, 李佰珏, 丁靖佳. 基于“人、物、场”的元宇宙书店构想[J]. 出版广角, 2022(18): 38-43,50.
    [76] Henrichs E, Noack T, Pinzon Piedrahita A M, et al. Can a byte improve our bite? an analysis of digital twins in the food industry[J]. Sensors, 2022, 22(1): 115. doi: 10.1109/JSEN.2021.3127045
    [77] Melesse T Y, Bollo M, Di Pasquale V, et al. Machine learning-based digital twin for monitoring fruit quality evolution[J]. Procedia Computer Science, 2022, 200: 13-20. doi: 10.1016/j.procs.2022.01.200
    [78] Verdouw C, Tekinerdogan B, Beulens A, et al. Digital twins in smart farming[J]. Agricultural Systems, 2021, 189: 103046. doi: 10.1016/j.agsy.2020.103046
    [79] Lan H Y, Ubina N A, Cheng S C, et al. Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process[J]. Applied Sciences, 2022, 13(1): 141. doi: 10.3390/app13010141
    [80] Shen F, Ren S S, Zhang X Y, et al. A digital twin-based approach for optimization and prediction of oil and gas production[J]. Mathematical Problems in Engineering, 2021, 2021: 1-8.
    [81] 陈奕延, 李晔, 李存金, 等. 基于数字孪生驱动的全面智慧创新管理新范式研究[J]. 科技管理研究, 2020, 40(23): 230-238. doi: 10.3969/j.issn.1000-7695.2020.23.030
    [82] Sun J, Tian Z, Fu Y, et al. Digital twins in human understanding: a deep learning-based method to recognize personality traits[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(7-8): 860-873. doi: 10.1080/0951192X.2020.1757155
    [83] Freese F, Ludwig A. How the Dimensions of Supply Chain are Reflected by Digital Twins: A State-of-the-Art Survey[C]. Springer International Publishing, 2021: 325-341.
    [84] 吕晓飞, 向春雪, 李一聪, 等. 基于CIM的智慧综合能源研究与应用[J]. 科技管理研究, 2023, 43(9): 177-182.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  40
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-16
  • 录用日期:  2023-10-09
  • 修回日期:  2023-10-13
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-08-18

目录

    /

    返回文章
    返回