留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转基因蛋白检测技术研究进展与展望

宁成香 武利庆

宁成香,武利庆. 转基因蛋白检测技术研究进展与展望[J]. 计量科学与技术,2023, 67(8): 29-35 doi: 10.12338/j.issn.2096-9015.2023.0220
引用本文: 宁成香,武利庆. 转基因蛋白检测技术研究进展与展望[J]. 计量科学与技术,2023, 67(8): 29-35 doi: 10.12338/j.issn.2096-9015.2023.0220
NING Chengxiang, WU Liqing. Advancements and Future Perspectives in Transgenic Protein Detection Technology[J]. Metrology Science and Technology, 2023, 67(8): 29-35. doi: 10.12338/j.issn.2096-9015.2023.0220
Citation: NING Chengxiang, WU Liqing. Advancements and Future Perspectives in Transgenic Protein Detection Technology[J]. Metrology Science and Technology, 2023, 67(8): 29-35. doi: 10.12338/j.issn.2096-9015.2023.0220

转基因蛋白检测技术研究进展与展望

doi: 10.12338/j.issn.2096-9015.2023.0220
基金项目: 农业生物育种重大项目(2022ZD040200703)。
详细信息
    作者简介:

    宁成香(1996-),中国计量科学研究院在读研究生,研究方向:转基因蛋白检测,邮箱:ningcx2@163.com

    通讯作者:

    武利庆(1978-),中国计量科学研究院研究员,研究方向:蛋白质量值溯源、计量方法、标准物质以及蛋白质分析设备、体外诊断设备计量技术研究,邮箱:wulq@nim.ac.cn

  • 中图分类号: TB99

Advancements and Future Perspectives in Transgenic Protein Detection Technology

  • 摘要: 转基因技术在提高农作物产量、减少环境污染、解决粮食短缺问题等方面发挥了重要的作用,转基因蛋白检测直接检测表达产物,能够实现现场快速检测,在转基因安全监管等方面发挥着重要的作用。介绍了转基因作物的种植情况、检测标准以及转基因蛋白检测相对于核酸检测的优势,综述了目前常用的转基因蛋白检测技术的原理、优缺点及应用范围,包括酶联免疫分析法、免疫印迹法、试纸条法、质谱分析法、生物传感器法、蛋白质阵列法、免疫PCR法。展望了未来转基因蛋白检测技术的发展方向,包括向快速与便携、高通量多靶同检、信号增强与单分子超灵敏检测、集成与全自动化检测等方向发展的可行性。有助于读者掌握转基因蛋白检测技术的现状与发展趋势,同时可作为转基因蛋白检测标准物质研制的参考。
  • [1] 杨树果. 全球转基因作物发展演变与趋势[J]. 中国农业大学学报, 2020, 25(9): 13-26. doi: 10.11841/j.issn.1007-4333.2020.09.02
    [2] 佚名. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1): 114-119. doi: 10.13523/j.cb.2012100
    [3] 王颢潜, 陈锐, 李夏莹, 等. 转基因产品成分检测技术研究进展[J]. 生物技术通报, 2018, 34(3): 31-38. doi: 10.13560/j.cnki.biotech.bull.1985.20170-0814
    [4] 李晓英, 赵玉芬, 孔华娟. 转基因食品与饲料的安全及评价分析[J]. 中国食品, 2023(2): 85-87. doi: 10.3969/j.issn.1000-1085.2023.02.032
    [5] 汪保卫, 常江, 王智文. 合成生物技术对生物多样性影响的评估探索[J]. 环境工程技术学报, 2022, 12(1): 215-223. doi: 10.12153/j.issn.1674-991X.20210213
    [6] 郭丹, 匡佩琳, 张威, 等. 转基因食用农产品的快速检测方法[J]. 食品安全质量检测学报, 2020, 11(11): 3398-3407. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.11.004
    [7] 李海燕, 武小霞, 李文滨. 转基因技术在中国的研究现状[J]. 大豆科技, 2019(5): 48-51. doi: 10.3969/j.issn.1674-3547.2019.05.012
    [8] LIU W X, Liu X, Liu C, et al. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect vip3aa in genetically modified crops[J]. Biotechnology Letters, 2020, 42(8): 1467-1478. doi: 10.1007/s10529-020-02854-9
    [9] P. K. Smitha, Christopher Bathula, Anil M. Kumar, et al. Correlation of cry1ac mRNA and protein abundance in transgenic Gossypium hirsutum plant[J]. 3 Biotech, 2021, 11(6): 289. doi: 10.1007/s13205-021-02828-2
    [10] FAHEEM A, Qin Y Q, NAN W R, et al. Advances in the immunoassays for detection of bacillus thuringiensis crystalline toxins[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10407-10418. doi: 10.1021/acs.jafc.1c02195
    [11] Liu W X, LI L, Zhang Z, et al. ITRAQ-based quantitative proteomic analysis of transgenic and non-transgenic maize seeds[J]. Journal of Food Composition and Analysis, 2020, 92: 103564. doi: 10.1016/j.jfca.2020.103564
    [12] Ye R F, CHEN H, Li H. One-pot synthesis of HRP&SA/zif-8 nanocomposite and its application in the detection of insecticidal crystalline protein cry1ab[J]. Nanomaterials, 2022, 12(15): 2679. doi: 10.3390/nano12152679
    [13] 王新桐, 孙佳芝, 高丽丽, 等. 转基因棉花中新霉素磷酸转移酶(NPT-II)双抗体夹心ELISA定量检测方法的建立[J]. 农业生物技术学报, 2014, 22(3): 372-379. doi: 10.3969/j.issn.1674-7968.2014.03.013
    [14] DAS A, SHUKLA A, THAKUR S, et al. Estimation of neomycin phosphotransferase-ii (NPT-II) protein in vegetative and reproductive tissues of transgenic chickpea (Cicer arietinum L. ) and biosafety perspectives[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(3): 568-570. doi: 10.1007/s13562-020-00562-z
    [15] RONG R J, WU P C, LAN J P, et al. Western blot detection of PMI protein in transgenic rice[J]. Journal of Integrative Agriculture, 2016, 15(4): 726-734. doi: 10.1016/S2095-3119(15)61053-X
    [16] 郭亚璐, 马晓飞, 史佳楠, 等. 转基因水稻中CAS9蛋白质的免疫印迹检测[J]. 中国农业科学, 2017, 50(19): 3631-3639. doi: 10.3864/j.issn.0578-1752.2017.19.001
    [17] WANG J B, YANG Q W, Hua Liu, et al. A nanomaterial-free and thionine labeling-based lateral flow immunoassay for rapid and visual detection of the transgenic CP4-EPSPS protein[J]. Food Chemistry, 2022, 378: 132112. doi: 10.1016/j.foodchem.2022.132112
    [18] 李夏莹, 高鸿飞, 刘鹏程, 等. 转基因作物快速检测技术的研究进展[J]. 江苏农业科学, 2018, 46(3): 5-9. doi: 10.15889/j.issn.1002-1302.2018.03.002
    [19] 候吉超, 吴斌, 姜蕾, 等. 转基因食品成分检测技术研究进展[J]. 食品安全导刊, 2022(9): 158-163.
    [20] 张欣, 彭毛, 刘波, 等. 快速试纸条在转基因水稻和大米检测中的应用[J]. 粮食科技与经济, 2015, 40(5): 48-49. doi: 10.16465/j.gste.cn431252ts.20150513
    [21] 谭桂玉, 祝一帆, 张漫, 等. 转基因外源蛋白Bt cry1ab/ac时间分辨荧光试纸条的制备与应用[J]. 分析化学, 2021, 49(5): 752-758.
    [22] ZHAO P H, Huang X Y, Tao H Q, et al. Antibody orientational labeling via staphylococcus a protein to improve the sensitivity of gold immunochromatography assays[J]. Analytical Biochemistry, 2022, 641: 114403. doi: 10.1016/j.ab.2021.114403
    [23] Zeng H J, Wang J B, Jia J W, et al. Development of a lateral flow test strip for simultaneous detection of bt-cry1ab, bt-cry1ac and CP4 EPSPS proteins in genetically modified crops[J]. Food Chemistry, 2021, 335: 127627. doi: 10.1016/j.foodchem.2020.127627
    [24] 张芳. 转基因动物及其产品检测技术研究进展[J]. 中国动物检疫, 2020, 37(12): 73-80. doi: 10.3969/j.issn.1005-944X.2020.12.016
    [25] 赵雨佳, 范培蕾, 梁亮, 等. 转基因作物的发展与检测分析[J]. 计量技术, 2019(10): 54-57.
    [26] SCHACHERER L J, XIE W P, OWENS M A, et al. Rapid detection of proteins in transgenic crops without protein reference standards by targeted proteomic mass spectrometry: rapid detection of target proteins in transgenic crops by midas[J]. Journal of the Science of Food and Agriculture, 2016, 96(12): 4116-4125. doi: 10.1002/jsfa.7612
    [27] DEVI S, Lin Y C, Ho Y P. Quantitative analysis of genetically modified soya using multiple reaction monitoring mass spectrometry with endogenous peptides as internal standards[J]. European Journal of Mass Spectrometry, 2019, 25(1): 50-57. doi: 10.1177/1469066718802548
    [28] SWATKOSKI S J, CROLEY T R. Screening of processed foods for transgenic proteins from genetically engineered plants using targeted mass spectrometry[J]. Analytical Chemistry, 2020, 92(4): 3455-3462. doi: 10.1021/acs.analchem.9b05577
    [29] 甄啸啸. 生物传感器法测定葡萄糖在标准物质定值中的应用[J]. 计量技术, 2019(11): 31-34.
    [30] MOHANTY S P, KOUGIANOUS E. Biosensors: a tutorial review[J]. IEEE Potentials, 2006, 25(2): 35-40. doi: 10.1109/MP.2006.1649009
    [31] 冯波, 谢文佳, 张晓光, 等. 食源性致病菌快速检测技术研究进展[J]. 食品科技, 2022, 47(11): 290-296.
    [32] 茹柿平. 检测转基因蛋白Cry 1ab的电化学免疫生物传感器研究[D]. 杭州: 浙江大学, 2012.
    [33] Farías M E, CORREA N M, Lucas Sosa, et al. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein cp4-epsps in seeds[J]. Talanta, 2022, 237: 122910. doi: 10.1016/j.talanta.2021.122910
    [34] TRUJILLO R M, DORE C, CASTRO L E, et al. Enhanced electrocatalytic behaviour of gold electrodes modified with ZNO nanoparticles through organophosphonate chemistry[J]. Applied Surface Science, 2020, 499: 143819. doi: 10.1016/j.apsusc.2019.143819
    [35] CHEN X S, Zhang D Y, Lin H, et al. MXene catalyzed faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops[J]. Sensors and Actuators B:Chemical, 2021, 346: 130549. doi: 10.1016/j.snb.2021.130549
    [36] 汪琳, 邢佑尚, 周琦, 等. 3种转基因成分检测蛋白芯片的研制[J]. 植物检疫, 2011, 25(3): 1-6. doi: 10.19662/j.cnki.issn1005-2755.2011.03.001
    [37] 沙莎. 转基因成分高通量检测体系—微流体蛋白质芯片的构建[D]. 杭州: 浙江大学, 2013.
    [38] TABATABAEI M S, ISLAM R, AHMED M. Applications of gold nanoparticles in ELISA, PCR, and immuno-pcr assays: a review[J]. Analytica Chimica Acta, 2021, 1143: 250-266. doi: 10.1016/j.aca.2020.08.030
    [39] KUMAR R. A real-time immuno-pcr assay for the detection of transgenic cry1ab protein[J]. European Food Research and Technology, 2012, 234(1): 101-108. doi: 10.1007/s00217-011-1618-2
    [40] LIU Y Y , JIANG D J , LU X , et al. Phage-mediated immuno-pcr for ultrasensitive detection of cry1ac protein based on nanobody[J]. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7882–7889.
    [41] Rajesh Kumar, Rajeshwar P Sinha. Real-time immuno-pcr: an approach for detection of trace amounts of transgenic proteins[J]. Journal of AOAC INTERNATIONAL, 2014, 97(6): 1634-1637. doi: 10.5740/jaoacint.14-044
    [42] 高鸿飞. 基于免疫传感新方法的外源蛋白分析研究[D]. 武汉: 华中农业大学, 2020.
    [43] 傅凯, 黄文胜, 邓婷婷, 等. 多重PCR-液相芯片技术检测13个品系转基因玉米[J]. 中国食品学报, 2015, 15(1): 188-197. doi: 10.16429/j.1009-7848.2015.01.028
    [44] WANG J B, Wang Y, HU X W , et al. A dual-rpa based lateral flow strip for sensitive, on-site detection of CP4 - EPSPS and cry1ab / ac genes in genetically modified crops[J]. Food Science and Human Wellness, 2024, 13(1): 183–190.
    [45] 武杰. β-半乳糖苷酶及mir-21数字化检测研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.
    [46] 王宇, 曾海娟, 刘华, 等. CRISPR专用试纸条的制备及其在转基因作物检测中的应用[J/OL]. [2023-11-14]. http://kns.cnki.net/kcms/detail/46.1068.S.20230913.2315.012.html.
    [47] 闫晓娟, 李冲. 全自动酶免分析系统检测乙肝表面抗原的影响因素分析[J]. 山西医药杂志, 2021, 50(13): 2111-2112. doi: 10.3969/j.issn.0253-9926.2021.13.037
  • 加载中
计量
  • 文章访问数:  310
  • HTML全文浏览量:  98
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 录用日期:  2023-11-13
  • 修回日期:  2023-11-14
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回