Advancements and Future Perspectives in Transgenic Protein Detection Technology
-
摘要: 转基因技术在提高农作物产量、减少环境污染、解决粮食短缺问题等方面发挥了重要的作用,转基因蛋白检测直接检测表达产物,能够实现现场快速检测,在转基因安全监管等方面发挥着重要的作用。介绍了转基因作物的种植情况、检测标准以及转基因蛋白检测相对于核酸检测的优势,综述了目前常用的转基因蛋白检测技术的原理、优缺点及应用范围,包括酶联免疫分析法、免疫印迹法、试纸条法、质谱分析法、生物传感器法、蛋白质阵列法、免疫PCR法。展望了未来转基因蛋白检测技术的发展方向,包括向快速与便携、高通量多靶同检、信号增强与单分子超灵敏检测、集成与全自动化检测等方向发展的可行性。有助于读者掌握转基因蛋白检测技术的现状与发展趋势,同时可作为转基因蛋白检测标准物质研制的参考。Abstract: Transgenic technology significantly contributes to enhancing crop yields, mitigating environmental pollution, and addressing food shortages. Central to this technology, transgenic protein assays, which directly detect expression products, facilitate rapid on-site testing and are crucial in transgenic safety regulation. This article delves into the cultivation of transgenic crops, outlines detection standards, and highlights the superiority of transgenic protein detection over nucleic acid assays. It comprehensively reviews the principles, merits, drawbacks, and applications of prevalent transgenic protein detection methods, such as enzyme-linked immunoassay, immunoblotting, test strip methods, mass spectrometry, biosensors, protein arrays, and immuno-PCR. Additionally, the article projects future trends in transgenic protein detection, exploring prospects for rapid, portable, high-throughput, multi-target detection, advanced signal amplification, ultra-sensitive single-molecule detection, and integrated, fully-automated systems. This work offers valuable insights into the current state and future directions of transgenic protein detection technology, serving as a key reference for the development of detection standards in this field.
-
Key words:
- metrology /
- genetic engineering /
- protein detection /
- crops /
- environmental pollution
-
[1] 杨树果. 全球转基因作物发展演变与趋势[J]. 中国农业大学学报, 2020, 25(9): 13-26. doi: 10.11841/j.issn.1007-4333.2020.09.02 [2] 佚名. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1): 114-119. doi: 10.13523/j.cb.2012100 [3] 王颢潜, 陈锐, 李夏莹, 等. 转基因产品成分检测技术研究进展[J]. 生物技术通报, 2018, 34(3): 31-38. doi: 10.13560/j.cnki.biotech.bull.1985.20170-0814 [4] 李晓英, 赵玉芬, 孔华娟. 转基因食品与饲料的安全及评价分析[J]. 中国食品, 2023(2): 85-87. doi: 10.3969/j.issn.1000-1085.2023.02.032 [5] 汪保卫, 常江, 王智文. 合成生物技术对生物多样性影响的评估探索[J]. 环境工程技术学报, 2022, 12(1): 215-223. doi: 10.12153/j.issn.1674-991X.20210213 [6] 郭丹, 匡佩琳, 张威, 等. 转基因食用农产品的快速检测方法[J]. 食品安全质量检测学报, 2020, 11(11): 3398-3407. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.11.004 [7] 李海燕, 武小霞, 李文滨. 转基因技术在中国的研究现状[J]. 大豆科技, 2019(5): 48-51. doi: 10.3969/j.issn.1674-3547.2019.05.012 [8] LIU W X, Liu X, Liu C, et al. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect vip3aa in genetically modified crops[J]. Biotechnology Letters, 2020, 42(8): 1467-1478. doi: 10.1007/s10529-020-02854-9 [9] P. K. Smitha, Christopher Bathula, Anil M. Kumar, et al. Correlation of cry1ac mRNA and protein abundance in transgenic Gossypium hirsutum plant[J]. 3 Biotech, 2021, 11(6): 289. doi: 10.1007/s13205-021-02828-2 [10] FAHEEM A, Qin Y Q, NAN W R, et al. Advances in the immunoassays for detection of bacillus thuringiensis crystalline toxins[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10407-10418. doi: 10.1021/acs.jafc.1c02195 [11] Liu W X, LI L, Zhang Z, et al. ITRAQ-based quantitative proteomic analysis of transgenic and non-transgenic maize seeds[J]. Journal of Food Composition and Analysis, 2020, 92: 103564. doi: 10.1016/j.jfca.2020.103564 [12] Ye R F, CHEN H, Li H. One-pot synthesis of HRP&SA/zif-8 nanocomposite and its application in the detection of insecticidal crystalline protein cry1ab[J]. Nanomaterials, 2022, 12(15): 2679. doi: 10.3390/nano12152679 [13] 王新桐, 孙佳芝, 高丽丽, 等. 转基因棉花中新霉素磷酸转移酶(NPT-II)双抗体夹心ELISA定量检测方法的建立[J]. 农业生物技术学报, 2014, 22(3): 372-379. doi: 10.3969/j.issn.1674-7968.2014.03.013 [14] DAS A, SHUKLA A, THAKUR S, et al. Estimation of neomycin phosphotransferase-ii (NPT-II) protein in vegetative and reproductive tissues of transgenic chickpea (Cicer arietinum L. ) and biosafety perspectives[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(3): 568-570. doi: 10.1007/s13562-020-00562-z [15] RONG R J, WU P C, LAN J P, et al. Western blot detection of PMI protein in transgenic rice[J]. Journal of Integrative Agriculture, 2016, 15(4): 726-734. doi: 10.1016/S2095-3119(15)61053-X [16] 郭亚璐, 马晓飞, 史佳楠, 等. 转基因水稻中CAS9蛋白质的免疫印迹检测[J]. 中国农业科学, 2017, 50(19): 3631-3639. doi: 10.3864/j.issn.0578-1752.2017.19.001 [17] WANG J B, YANG Q W, Hua Liu, et al. A nanomaterial-free and thionine labeling-based lateral flow immunoassay for rapid and visual detection of the transgenic CP4-EPSPS protein[J]. Food Chemistry, 2022, 378: 132112. doi: 10.1016/j.foodchem.2022.132112 [18] 李夏莹, 高鸿飞, 刘鹏程, 等. 转基因作物快速检测技术的研究进展[J]. 江苏农业科学, 2018, 46(3): 5-9. doi: 10.15889/j.issn.1002-1302.2018.03.002 [19] 候吉超, 吴斌, 姜蕾, 等. 转基因食品成分检测技术研究进展[J]. 食品安全导刊, 2022(9): 158-163. [20] 张欣, 彭毛, 刘波, 等. 快速试纸条在转基因水稻和大米检测中的应用[J]. 粮食科技与经济, 2015, 40(5): 48-49. doi: 10.16465/j.gste.cn431252ts.20150513 [21] 谭桂玉, 祝一帆, 张漫, 等. 转基因外源蛋白Bt cry1ab/ac时间分辨荧光试纸条的制备与应用[J]. 分析化学, 2021, 49(5): 752-758. [22] ZHAO P H, Huang X Y, Tao H Q, et al. Antibody orientational labeling via staphylococcus a protein to improve the sensitivity of gold immunochromatography assays[J]. Analytical Biochemistry, 2022, 641: 114403. doi: 10.1016/j.ab.2021.114403 [23] Zeng H J, Wang J B, Jia J W, et al. Development of a lateral flow test strip for simultaneous detection of bt-cry1ab, bt-cry1ac and CP4 EPSPS proteins in genetically modified crops[J]. Food Chemistry, 2021, 335: 127627. doi: 10.1016/j.foodchem.2020.127627 [24] 张芳. 转基因动物及其产品检测技术研究进展[J]. 中国动物检疫, 2020, 37(12): 73-80. doi: 10.3969/j.issn.1005-944X.2020.12.016 [25] 赵雨佳, 范培蕾, 梁亮, 等. 转基因作物的发展与检测分析[J]. 计量技术, 2019(10): 54-57. [26] SCHACHERER L J, XIE W P, OWENS M A, et al. Rapid detection of proteins in transgenic crops without protein reference standards by targeted proteomic mass spectrometry: rapid detection of target proteins in transgenic crops by midas[J]. Journal of the Science of Food and Agriculture, 2016, 96(12): 4116-4125. doi: 10.1002/jsfa.7612 [27] DEVI S, Lin Y C, Ho Y P. Quantitative analysis of genetically modified soya using multiple reaction monitoring mass spectrometry with endogenous peptides as internal standards[J]. European Journal of Mass Spectrometry, 2019, 25(1): 50-57. doi: 10.1177/1469066718802548 [28] SWATKOSKI S J, CROLEY T R. Screening of processed foods for transgenic proteins from genetically engineered plants using targeted mass spectrometry[J]. Analytical Chemistry, 2020, 92(4): 3455-3462. doi: 10.1021/acs.analchem.9b05577 [29] 甄啸啸. 生物传感器法测定葡萄糖在标准物质定值中的应用[J]. 计量技术, 2019(11): 31-34. [30] MOHANTY S P, KOUGIANOUS E. Biosensors: a tutorial review[J]. IEEE Potentials, 2006, 25(2): 35-40. doi: 10.1109/MP.2006.1649009 [31] 冯波, 谢文佳, 张晓光, 等. 食源性致病菌快速检测技术研究进展[J]. 食品科技, 2022, 47(11): 290-296. [32] 茹柿平. 检测转基因蛋白Cry 1ab的电化学免疫生物传感器研究[D]. 杭州: 浙江大学, 2012. [33] Farías M E, CORREA N M, Lucas Sosa, et al. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein cp4-epsps in seeds[J]. Talanta, 2022, 237: 122910. doi: 10.1016/j.talanta.2021.122910 [34] TRUJILLO R M, DORE C, CASTRO L E, et al. Enhanced electrocatalytic behaviour of gold electrodes modified with ZNO nanoparticles through organophosphonate chemistry[J]. Applied Surface Science, 2020, 499: 143819. doi: 10.1016/j.apsusc.2019.143819 [35] CHEN X S, Zhang D Y, Lin H, et al. MXene catalyzed faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops[J]. Sensors and Actuators B:Chemical, 2021, 346: 130549. doi: 10.1016/j.snb.2021.130549 [36] 汪琳, 邢佑尚, 周琦, 等. 3种转基因成分检测蛋白芯片的研制[J]. 植物检疫, 2011, 25(3): 1-6. doi: 10.19662/j.cnki.issn1005-2755.2011.03.001 [37] 沙莎. 转基因成分高通量检测体系—微流体蛋白质芯片的构建[D]. 杭州: 浙江大学, 2013. [38] TABATABAEI M S, ISLAM R, AHMED M. Applications of gold nanoparticles in ELISA, PCR, and immuno-pcr assays: a review[J]. Analytica Chimica Acta, 2021, 1143: 250-266. doi: 10.1016/j.aca.2020.08.030 [39] KUMAR R. A real-time immuno-pcr assay for the detection of transgenic cry1ab protein[J]. European Food Research and Technology, 2012, 234(1): 101-108. doi: 10.1007/s00217-011-1618-2 [40] LIU Y Y , JIANG D J , LU X , et al. Phage-mediated immuno-pcr for ultrasensitive detection of cry1ac protein based on nanobody[J]. Journal of Agricultural and Food Chemistry, 2016, 64(41): 7882–7889. [41] Rajesh Kumar, Rajeshwar P Sinha. Real-time immuno-pcr: an approach for detection of trace amounts of transgenic proteins[J]. Journal of AOAC INTERNATIONAL, 2014, 97(6): 1634-1637. doi: 10.5740/jaoacint.14-044 [42] 高鸿飞. 基于免疫传感新方法的外源蛋白分析研究[D]. 武汉: 华中农业大学, 2020. [43] 傅凯, 黄文胜, 邓婷婷, 等. 多重PCR-液相芯片技术检测13个品系转基因玉米[J]. 中国食品学报, 2015, 15(1): 188-197. doi: 10.16429/j.1009-7848.2015.01.028 [44] WANG J B, Wang Y, HU X W , et al. A dual-rpa based lateral flow strip for sensitive, on-site detection of CP4 - EPSPS and cry1ab / ac genes in genetically modified crops[J]. Food Science and Human Wellness, 2024, 13(1): 183–190. [45] 武杰. β-半乳糖苷酶及mir-21数字化检测研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023. [46] 王宇, 曾海娟, 刘华, 等. CRISPR专用试纸条的制备及其在转基因作物检测中的应用[J/OL]. [2023-11-14]. http://kns.cnki.net/kcms/detail/46.1068.S.20230913.2315.012.html. [47] 闫晓娟, 李冲. 全自动酶免分析系统检测乙肝表面抗原的影响因素分析[J]. 山西医药杂志, 2021, 50(13): 2111-2112. doi: 10.3969/j.issn.0253-9926.2021.13.037
点击查看大图
计量
- 文章访问数: 431
- HTML全文浏览量: 174
- PDF下载量: 43
- 被引次数: 0