Error Correction of Vehicle Terminal Based on Neural Network and Lagged Variable Regression
-
摘要: 针对现有车载定位终端存在定位误差大和更新速度慢的问题,深入分析了车载终端定位误差的影响因素,并提出了基于BP神经网络和滞后变量回归的车载终端定位误差修正方法。对比车载终端三次测量数据修正前后的定位误差,最大定位误差分别减小了88.2%、85.4%和85.8%。通过实测数据对比了车载终端修正前后的定位误差,证明了使用BP神经网络和滞后变量回归建立的车载终端定位误差模型是有效的,定位误差修正效果较好。Abstract: Existing on-board positioning terminals has the problems of large positioning errors and slow updating speed. The influencing factors of the positioning error of the vehicle terminal are analyzed, and the method of correcting the positioning error of the vehicle terminal based on BP neural network and lagged variable regression is proposed. The positioning errors of the vehicle terminal before and after correction of three measurements are compared. The maximum positioning errors are reduced by 88.2%、85.4% and 85.8%, respectively. The positioning errors of the vehicle terminal before and after correction are compared to the measured data, which proves the positioning error model of the vehicle terminal established by BP neural network and lagged variable regression is effective.
-
表 1 修正前后车载终端的最大定位误差及减小百分比
Table 1. Maximum positioning error and percentage reduction of vehicle terminal before and after correction
测试序号 修正前/m 修正后/m 减小百分比 第1次 1.53 0.18 88.2% 第2次 1.51 0.22 85.4% 第3次 1.34 0.19 85.8% 表 2 本文方法与多项式拟合方法减小百分比对比
Table 2. Comparison of percentage reduction between the proposed method and polynomial fitting method
测试序号 本文方法 多项式拟合方法 第1次 88.2% 43.8% 第2次 85.4% 32.8% 第3次 85.8% 39.1% -
[1] 柯贤亮. 车载北斗/GPS组合定位终端的研究[D]. 福州: 福州大学, 2016. [2] 郝志涛. 北斗卫星导航系统发展与应用[J]. 电子技术与软件工程, 2017(7): 34-36. [3] 谢鹏. 惯性导航和卫星导航的组合导航技术研究[D]. 北京: 北京理工大学, 2006. [4] 周俊, 王琳, 徐永强, 等. 惯性导航与卫星导航组合定位精度分析及仿真[J]. 无线电工程, 2018, 48(12): 1086-1090. doi: 10.3969/j.issn.1003-3106.2018.12.14 [5] 张霄霄, 庞瑶. 基于卫星模拟仿真平台的导航产品测试技术研究[J]. 现代电子技术, 2012, 35(10): 115-117. doi: 10.3969/j.issn.1004-373X.2012.10.037 [6] 许江涛, 庞尚益, 吴学文, 等. 基于信号模拟器的BDS导航定位产品检测中心建设[J]. 导航定位学报, 2015, 3(4): 22-26. doi: 10.16547/j.cnki.10-1096.20150405 [7] GUO L, JIN C, LIU G. Evaluation on measurement performance of low-cost GNSS receivers[C]. IEEE, 2017. [8] 解晶. 基于高速火箭撬的GNSS接收机定位精度评估方法研究[J]. 现代导航, 2017, 8(1): 1-4. [9] 朱肖光. 基于真实场景回放的导航接收机测试评估方法研究[D]. 上海: 上海交通大学, 2017. [10] 福建省计量科学研究院. 卫星定位系统车载终端测速装置: JJG(闽)1045-2011 [S]. 福建: 福建省质量技术监督局, 2011. [11] 张建. 卫星定位车载终端校准方法探讨[J]. 工业计量, 2022, 32(1): 17-19,22. [12] 江苏省计量科学研究院. 道路运输车辆卫星定位系统车载终端校准规范: JJF(苏)192-2021 [S]. 江苏: 江苏省质量技术监督局, 2021. [13] Wu D, Huang S, Xin J. Dynamic compensation for an infrared thermometer sensor using least-squares support vector regression (LSSVR) based functional link artificial neural networks (FLANN)[J]. Measurement Science and Technology, 2008, 19(10): 105202. doi: 10.1088/0957-0233/19/10/105202 [14] 何春茂, 崔中, 苏旭, 等. 基于最小二乘法的机床螺距误差补偿方法研究[J]. 机械管理开发, 2023, 38(1): 4-7. [15] 王伟斌, 邱长泉. 基于最小二乘曲线拟合的信号调理电路误差补偿方法[J]. 计算机测量与控制, 2009, 17(11): 2286-2288,2291. doi: 10.16526/j.cnki.11-4762/tp.2009.11.060 [16] 宋成, 王飞雪, 庄钊文. 基于遗忘因子最小二乘的GPS接收机钟差预测算法研究[J]. 测绘科学, 2008, 33(S1): 41-43,59. [17] 王虎, 王解先, 白贵霞, 等. 改进的渐消卡尔曼滤波在GPS动态定位中的应用[J]. 同济大学学报(自然科学版), 2011, 39(1): 124-128. doi: 10.3969/j.issn.0253-374x.2011.01.024 [18] 张兰勇, 陈辉煌, 孟坤. 消除模型误差的卡尔曼滤波在GPS定位中的应用研究[J]. 兵器装备工程学报, 2018, 39(1): 136-140. doi: 10.11809/bqzbgcxb2018.01.030 [19] 陈柯勋, 邱伟. 一种基于改进卡尔曼滤波的GPS/BDS/SINS深组合定位算法[J]. 太原理工大学学报, 2020, 51(3): 446-450. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.03.018 [20] 高为广, 杨元喜, 张婷. 神经网络辅助的GPS/INS组合导航自适应滤波算法[J]. 测绘学报, 2007(1): 26-30. doi: 10.3321/j.issn:1001-1595.2007.01.005 [21] 林健, 汪木兰, 李宏胜. 基于遗传神经网络的直线伺服系统定位误差补偿[J]. 组合机床与自动化加工技术, 2011(2): 86-88,92. doi: 10.3969/j.issn.1001-2265.2011.02.024 [22] 胡燕祝, 李雷远. Kalman滤波-BP神经网络在执行机构自主定位中的应用[J]. 北京邮电大学学报, 2016, 39(6): 110-115. doi: 10.13190/j.jbupt.2016.06.021 [23] 赵光辉. 道路运输车辆卫星定位系统设计与研究[D]. 西安: 长安大学, 2013. [24] 李俊杰. GNSS和INS导航系统中关键技术的算法研究[D]. 成都: 电子科技大学, 2016. [25] 吴盘龙, 彭帅, 姬存慧. 基于北斗信号辐射源的无源雷达定位技术[J]. 中国惯性技术学报, 2012, 20(3): 306-310. doi: 10.3969/j.issn.1005-6734.2012.03.012 [26] 薛鸿印, 李景森. 北斗无源定位技术[J]. 现代防御技术, 2005(4): 39-41,53. doi: 10.3969/j.issn.1009-086X.2005.04.009 [27] 廉保旺, 赵楠, 王永生. 三星定位算法的研究[J]. 弹箭与制导学报, 2006, 26(1): 134-136,139. doi: 10.3969/j.issn.1673-9728.2006.01.045 [28] 付代光, 肖国强, 周黎明, 等. 基于非线性贝叶斯理论和BIC准则的防渗墙高精度瑞雷波反演研究[J]. 水利水电技术, 2018, 49(8): 64-70. doi: 10.13928/j.cnki.wrahe.2018.08.008 [29] 梁旺, 秦兆博, 陈亮, 等. 基于改进BP神经网络的智能车纵向控制方法[J]. 汽车工程, 2022, 44(8): 1162-1172. doi: 10.19562/j.chinasae.qcgc.2022.08.006 [30] 祁升龙, 芦翔, 刘海涛, 等. 基于遗传算法优化的BP神经网络在配电网故障诊断中的应用[J]. 电力科学与技术学报, 2023, 38(3): 182-187,196. doi: 10.19781/j.issn.1673-9140.2023.03.020 [31] 刘小平, 鄂东辰, 高强, 等. 基于BP神经网络的翻车机液压系统故障诊断[J]. 液压与气动, 2016, 300(8): 68-73. doi: 10.11832/j.issn.1000-4858.2016.08.013 [32] 孟晨, 蒋继乐, 郭斌, 等. 基于神经网络的扭矩传感器稳定性分析预测[J]. 计量科学与技术, 2022, 66(5): 8-14,68. [33] 蒋依芹, 李卓然, 李雨霄, 等. 基于人工神经网络的光学图像标准化显示研究[J]. 计量科学与技术, 2021(2): 63-68,72. -