In-Situ Measurement and Research on Characteristic Spectra of Pantograph-Catenary Arcing in Metro
-
摘要: 为更好地满足我国地铁轨道交通弓网系统动态及性能检测核心项目——弓网燃弧标准检测需求,提高检测的准确有效性,建立了基于光纤光谱仪的弓网燃弧光谱原位测试系统,用于实时测量地铁运行中瞬时不定期发生的弓网燃弧特征光谱。介绍了地铁弓网燃弧光谱原位测试系统的设计及其实验室波长准确性定标,并在此基础上开展了地铁运行现场实时试验。以北京地铁某路线的原位实时测试数据为例,结合列车运行监测参数,提取并分析其弓网燃弧特征光谱。数据结果表明,我国地铁弓网燃弧特征光谱区别于自然太阳光和普通照明光源的显著特征光谱在 220~225 nm,峰值波长在224.6 nm。研究结果对于解决目前国际国内标准与学术文章在光谱特征波长方面的分歧提供了实测数据依据,对我国地铁弓网燃弧监测系统的选型和研制以及标定,均具有重要指导意义。Abstract: To better meet the core content of dynamic and performance testing for subway and rail transit pantograph catenary system, that is pantograph-catenary arcing measurement, and to improve the accuracy and effectiveness of measurement, an in situ testing system for the arcing spectrum of the subway pantograph network based on a fiber optic spectrometer has been established for real-time measurement of instantaneous and irregular arcing characteristics spectrum of pantograph and catenary during subway operation. This paper introduces the design of an in situ testing system for the arcing spectrum of pantograph and catenary, as well as the calibration of wavelength accuracy in the laboratory. Based on this, real-time experiments were conducted on subway operation sites. Taking the in-situ measured data of a certain subway line in Beijing as an example, combined with train operation monitoring parameters, the spectral data of the arcing characteristics of the pantograph network were extracted and analyzed. The experimental results shown that the significant characteristic wavelengths of the subway arcing spectra which differ from natural sunlight and ordinary lighting sources are in the range of 220~225 nm with peak wavelength at 224.6 nm. The research results provide a practical basis for resolving the differences between international and domestic standards and academic papers in the spectral characteristic wavelength of subway pantograph-catenary arcing, and have important guiding significance for the selection, development, and calibration of China's subway pantograph and catenary arcing monitoring system.
-
Key words:
- metrology /
- pantograph-catenary arcing /
- characteristic spectra /
- in-situ measurement /
- ultraviolet /
- peak wavelength
-
表 1 现场实验用光谱仪测量值与标准谱线标准值之间的对比
Table 1. Comparison between the measured values of the spectrometers used in on-site experiments and the standard values of standard spectral lines
标准值/nm 1#光谱仪
测量值/nm2#光谱仪
测量值/nm1#光谱仪
偏差/nm2#光谱仪
偏差/nm253.6 253.4 253.4 −0.2 −0.2 312.6 313.2 313.2 0.6 0.6 404.6 404.6 404.6 0.0 0.0 435.8 435.9 435.9 0.1 0.1 546.1 546.0 546.0 −0.1 −0.1 579.1 578.0 578.0 −1.1 −1.1 -
[1] 周宁, 蔚超, 谭梦颖, 等. 弓网系统动态及受流性能测试技术研究及应用[J]. 铁道学报, 2020, 42(3): 47-54. doi: 10.3969/j.issn.1001-8360.2020.03.006 [2] 吴燕, 吴俊勇, 郑积浩, 等. 高速受电弓-接触网动态受流性能及双弓距离的研究[J]. 铁道学报, 2010, 32(4): 38-43. doi: 10.3969/j.issn.1001-8360.2010.04.008 [3] 王黎, 高晓蓉, 赵全轲, 等. 弓网系统的动态检测及研究[J]. 铁道学报, 1999, 21(2): 105-109. doi: 10.3321/j.issn:1001-8360.1999.02.024 [4] 徐旻, 刘文正, 伊金浩, 等. 受电弓离线过程弓网电弧电气特性研究[J]. 铁道标准设计, 2021, 65(2): 147-153. doi: 10.13238/j.issn.1004-2954.202001060005 [5] 王英, 刘志刚, 范福强, 等. 弓网电弧模型及其电气特性的研究进展[J]. 铁道学报, 2013, 35(8): 35-43. doi: 10.3969/j.issn.1001-8360.2013.08.006 [6] 王万岗, 吴广宁, 高国强, 等. 高速铁路弓网电弧试验系统[J]. 铁道学报, 2012, 34(4): 22-27. doi: 10.3969/j.issn.1001-8360.2012.04.004 [7] 李希炜, 朱峰. 武广高速铁路轨旁电磁干扰实测及分析[J]. 铁道标准设计, 2014, 58(9): 121-124. doi: 10.13238/j.issn.1004-2954.2014.09.030 [8] 丁心志, 刘柱揆, 严跃, 等. 电弧光光谱成分特性及其应用分析[J]. 电气工程学报, 2015, 10(5): 75-81. doi: 10.11985/JEE.2015.05.008 [9] 工业和信息化部. 铜及铜合金分析方法 火花放电原子发射光谱法 : YS/T 482-2022 [S]. 北京: 中国标准出版社, 2022. [10] 吴琛, 伍川辉, 杨恒, 等. 基于LabVIEW图像处理的弓网拉弧在线监测研究[J]. 铁道标准设计, 2018, 62(9): 145-148. doi: 10.13238/j.issn.1004-2954.201711210005 [11] 刘宝轩, 陈唐龙, 于龙, 等. 地铁弓网燃弧能量检测与牵引电流扰动分析[J]. 铁道学报, 2015, 37(3): 8-13. doi: 10.3969/j.issn.1001-8360.2015.03.002 [12] 马成. 基于燃弧检测装置的弓网受流质量试验分析 [D]. 成 都: 西南交通大学, 2013. [13] 卢兵, 于龙, 张冬凯. 弓网燃弧检测装置定标及其最小功率密度测量[J]. 电子测量与仪器学报, 2016, 30(3): 328-388. doi: 10.13382/j.jemi.2016.03.007 [14] 张士奎, 周兴无, 姜保林. 基于紫外脉冲原理的地铁弓网燃弧检测系统研究[J]. 现代城市轨道交通, 2013, 3: 29-33. doi: 10.3969/j.issn.1672-7533.2013.02.011 [15] 毛玉伟. 基于紫外光信号的弓网电弧强度检测装置的研究 [D]. 北京: 北京交通大学, 2019. [16] 于晓英, 苏宏升. 基于PMT电压一次积分值的城轨弓网电弧检测系统[J]. 铁道学报, 2019, 41(9): 41-51. doi: 10.3969/j.issn.1001-8360.2019.09.007 [17] 代富强. 城市轨道交通弓网燃弧检测与分析[J]. 现代城市轨道交通, 2014(3): 4 doi: 10.3969/j.issn.1672-7533.2014.03.023 [18] 金光. 城市轨道交通弓网燃弧现象分析及试验研究[J]. 电气化铁道, 2014(1): 44-47. doi: 10.3969/j.issn.1007-936X.2014.01.012 [19] 王婧, 张文轩, 杨志鹏, 等. 一种弓网燃弧模拟装置及其控制方法: CN202210187862.4[P]. 2023-11-09. [20] EUROPEAN STANDARD. Railway applications -- Current collection systems --Requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line : BS EN 50317: 2012 [S]. London: BSI Standards Limited, 2012. [21] 国家质量监督检疫总局. 轨道交通 受流系统 受电弓与接触网动态相互作用测量的要求和验证: GB/T 32592-2016 [S]. 北京: 中国标准出版社, 2016. [22] 雷栋, 张婷婷, 段绪伟, 等. 列车运行速度对弓网电弧电气特性的影响研究[J]. 铁道学报, 2019, 41(7): 50-56. doi: 10.3969/j.issn.1001-8360.2019.07.007 [23] 景所立, 魏隆, 陈欢, 等. 低气压环境电气化铁路弓网电弧放电特性研究[J]. 铁道标准设计, 2022, 66(6): 138-145. [24] 冯国进, 甘海勇, 赫英威, 等. 一种基于谱线灯组的高精度光谱仪波长标定装置: CN201721657440. X [P]. 2017-12-01. [25] 孙若端, 赫英威, 刘欣萌. 光栅单色仪波长校准装置可计量性设计研究[J]. 计量科学与技术, 2023, 67(6): 3-8. doi: 10.12338/j.issn.2096-9015.2023.0134 [26] 熊利民, 林延东, 霍超, 等. 200~400 nm波段光电探测器光谱响应度测量装置研究[J]. 计量技术, 2008, 2: 13-17. [27] INTERNATIONAL STANDARD. Photovoltaic devices – Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data: IEC 60904-2-2015 [S]. Geneva: International Electrotechnical Commission. 2019. [28] 赵伟强, 刘慧, 闫劲云, 等. 近紫外 LED 总辐射通量测量比较研究[J]. 计量科学与技术, 2022, 66(5): 25-28. [29] 王彦飞, 代彩红, 许超群, 等. 紫外 LED 计量标准装置的建立[J]. 计量科学与技术, 2022, 66(4): 74-79. [30] 孟海凤, 熊利民, 张俊超, 等. 弓网燃弧检测装置的标定系统: CN 115508762. A [P]. 2022-12-23. -