留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺寸先进计量技术研究与进展概述

李建双 缪东晶 刘洋 赫明钊 李连福 蒋远林 康瑶 王德利 朱佳祥

李建双,缪东晶,刘洋,等. 大尺寸先进计量技术研究与进展概述[J]. 计量科学与技术,2024, 68(2): 30-39 doi: 10.12338/j.issn.2096-9015.2023.0236
引用本文: 李建双,缪东晶,刘洋,等. 大尺寸先进计量技术研究与进展概述[J]. 计量科学与技术,2024, 68(2): 30-39 doi: 10.12338/j.issn.2096-9015.2023.0236
LI Jianshuang, MIAO Dongjing, LIU Yang, HE Mingzhao, LI Lianfu, JIANG Yuanlin, KANG Yao, WANG Deli, ZHU Jiaxiang. Overview of Research and Development of Large-Scale Advanced Metrology Technology[J]. Metrology Science and Technology, 2024, 68(2): 30-39. doi: 10.12338/j.issn.2096-9015.2023.0236
Citation: LI Jianshuang, MIAO Dongjing, LIU Yang, HE Mingzhao, LI Lianfu, JIANG Yuanlin, KANG Yao, WANG Deli, ZHU Jiaxiang. Overview of Research and Development of Large-Scale Advanced Metrology Technology[J]. Metrology Science and Technology, 2024, 68(2): 30-39. doi: 10.12338/j.issn.2096-9015.2023.0236

大尺寸先进计量技术研究与进展概述

doi: 10.12338/j.issn.2096-9015.2023.0236
基金项目: 中国计量科学研究院基础科研业务费(AKYZZ2103、AKYZD2212)。
详细信息
    作者简介:

    李建双(1966-),中国计量科学研究院研究员,研究方向:大尺寸计量,邮箱:lijiansh@nim.ac.cn

  • 中图分类号: TB921

Overview of Research and Development of Large-Scale Advanced Metrology Technology

  • 摘要: 大尺寸计量技术是高精度测量或标定大尺寸物体长度、位置姿态和形貌参量的关键技术,在工业制造、大型建造和工业测量等领域具有广泛的应用。伴随先进光学技术、精密测量技术、数据融合技术和工程应用技术的逐步发展,大尺寸计量技术同样从技术和应用层面均面临不断革新,诞生一系列大尺寸先进计量新技术,打破传统大尺寸计量中单一量值和离线溯源的瓶颈,逐步向复合参量和原位溯源进行过渡,进一步向实现数字化、扁平化和智能化的高精度大尺寸计量变革。通过介绍大尺寸计量中室内工业测量和室外大地测量中的先进计量技术,为大尺寸计量未来的发展趋势进行了展望和分析,并为先进大尺寸计量技术的进一步发展提供了新思路。
  • 图  1  双色调制波相位测距原理样机(法国CNAM)

    Figure  1.  Principle prototype of two-color modulated wave phase ranging(CNAM,French)

    图  2  基于紧凑型FPGA的正交锁相放大鉴相系统

    Figure  2.  Orthogonal phase-locked amplification phase measurement system based on compact FPGA

    图  3  全站仪自动测频装置与测尺频率随温度变化实验

    Figure  3.  Experiment on automatic frequency measuring device and ruler frequency variation with temperature in total stations

    图  4  基于空间光路集成的双光梳异步光学采样绝对测距装置

    Figure  4.  Dual-comb asynchronous optical sampling absolute ranging device based on spatial optical path integration

    图  5  双光梳自由运转时,在不同干涉光谱带宽下两小时的干涉光谱状态[36]

    Figure  5.  Interferometric spectrum state over two hours under different spectral bandwidths with dual combs in free-running mode

    图  6  wMPS测量系统

    Figure  6.  wMPS measurement system

    图  7  多台跟踪仪动态位姿测量

    Figure  7.  Dynamic positional measurement with multiple tracking devices

    图  8  基于多边法的坐标测量原理

    Figure  8.  Coordinate measurement principle based on the multilateral method

    图  9  激光跟踪干涉仪

    Figure  9.  Laser tracer

    图  10  中国计量科学研究院昌平基线场

    Figure  10.  Changping baseline field at the NationalInstitute of Metrology of China

    图  11  环境参数自动测量系统传感器布局图

    Figure  11.  Sensor layout of the automatic environmental parameter measurement system

    图  12  高精度绝对测距仪基线测量

    Figure  12.  High-precision absolute rangefinder baseline measurement using μ-base

    图  13  德国PTB多波长测长仪TeleYAG-II

    Figure  13.  Multi-wavelength interferometer TeleYAG-II at PTB, Germany

    图  14  ATLAS粒子探测器的建造结构

    Figure  14.  Construction structure of ATLAS particle detector

    图  15  射电望远镜控制点高精度测量

    Figure  15.  High-precision measurement of control points for radio telescopes

  • [1] Schmitt R, Peterek M, Morse E, et al. Advances in large-scale metrology–review and future trends[J]. CIRP Annals, 2016, 65(2): 643-65. doi: 10.1016/j.cirp.2016.05.002
    [2] 谭久彬. 超精密测量与高端装备制造质量[J]. 中国工业和信息化, 2020(6): 18-23. doi: 10.3969/j.issn.1674-9138.2020.06.003
    [3] 朱美娜. 构建国家现代先进测量体系, 助推制造业转型升级[J]. 中国计量, 2018(9): 13-6,26.
    [4] 徐成华. 国家质量基础设施技术体系建设的实践与思考[J]. 中国市场监管研究, 2020, 327(1): 23-26. doi: 10.3969/j.issn.1004-7645.2020.01.007
    [5] 秦宜智. 实施《计量发展规划(2021-2035年)》全面开启加快计量发展新征程[J]. 中国计量, 2022(6): 5-9.
    [6] Pollinger F, Baselga S, Courde C, et al. The European GeoMetre project: developing enhanced large-scale dimensional metrology for geodesy[J]. J Applied Geomatics, 2023, 1: 1-11.
    [7] Muralikrishnan B, Phillips S, Sawyer D. Laser trackers for large-scale dimensional metrology: a review[J]. Precision Engineering, 2016, 44: 13-28. doi: 10.1016/j.precisioneng.2015.12.001
    [8] Cuypers W, Van Gestel N, Voet A, et al. Optical measurement techniques for mobile and large-scale dimensional metrology[J]. Optics and Lasers in Engineering, 2009, 47(3-4): 292-300. doi: 10.1016/j.optlaseng.2008.03.013
    [9] 刘学德. 野外基线高精度激光测量环境参数补偿系统研制 [D]. 天津: 天津大学, 2019.
    [10] Meiners-Hagen K, Meyer T, Mildner J, et al. SI-traceable absolute distance measurement over more than 800 meters with sub-nanometer interferometry by two-color inline refractivity compensation[J]. Applied Physics Letters, 2017, 111(19): 191104. doi: 10.1063/1.5000569
    [11] Tomberg T, Fordell T, Jokela J, et al. Spectroscopic thermometry for long-distance surveying[J]. Appl Optics, 2017, 56(2): 239-246. doi: 10.1364/AO.56.000239
    [12] Rüeger J M. Electronic distance measurement: An introduction [M]. Berlin: Springer Science & Business Media, 2012.
    [13] 刘学德, 缪东晶, 张京燕, 等. 1.2 km标准基线环境参数自动测量系统研制[J]. 计量学报, 2020, 41(8): 897-902. doi: 10.3969/j.issn.1000-1158.2020.08.01
    [14] 陈杨, 李建双, 缪东晶, 等. 基于传感器阵列的野外基线环境参数自动测量系统研制[J]. 计量学报, 2018, 39(4): 455-460. doi: 10.3969/j.issn.1000-1158.2018.04.02
    [15] de La Serve M T, Wallerand J-P, Guillory J, et al. Arpent: un prototype de haute exactitude pour les mesures de grande distance[J]. Metrology, 2018, 154: 35-40.
    [16] Guillory J, Šmíd R, García-Márquez J, et al. High resolution kilometric range optical telemetry in air by radio frequency phase measurement[J]. Rev Sci Instrum, 2016, 87(7): 075105. doi: 10.1063/1.4954180
    [17] Guillory J, de La Serve M T, Truong D, et al. Uncertainty assessment of optical distance measurements at micrometer level accuracy for long-range applications[J]. IEEE Trans Instrum Meas, 2019, 68(6): 2260-2267. doi: 10.1109/TIM.2019.2902804
    [18] 刘洋, 李建双, 赫明钊, 等. 大尺寸计量中双光梳绝对测距方法的研究进展[J]. 计量科学与技术, 2023, 67(4): 18-27.
    [19] Guillory J, Truong D, Wallerand J-P. Multilateration with Self-Calibration: Uncertainty Assessment, Experimental Measurements and Monte-Carlo Simulations[J]. Metrology, 2022, 2(2): 241-262. doi: 10.3390/metrology2020015
    [20] 杨伟雷, 刘洋, 赫明钊, 等. 外差干涉相位测量中信号串扰误差与补偿方法研究[J]. 中国激光, 2023, 50(10): 83-94.
    [21] Kim S W. Combs rule[J]. Nat Photonics, 2009, 3(6): 313-314. doi: 10.1038/nphoton.2009.86
    [22] Fortier T , Baumann E . 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2019, 2(1): 280-S124.
    [23] Weimann C, Messner A, Baumgartner T, et al. Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs[J]. Optics Express, 2018, 26(26): 34305-34335. doi: 10.1364/OE.26.034305
    [24] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083. doi: 10.1126/science.aan8083
    [25] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Appl Optics, 2000, 39(30): 5512-5517. doi: 10.1364/AO.39.005512
    [26] Doloca N R, Meiners-Hagen K, Wedde M, et al. Absolute distance measurement system using a femtosecond laser as a modulator[J]. Meas Sci Technol, 2010, 21(11): 7.
    [27] Wei D, Takahashi S, Takamasu K, et al. Time-of-flight method using multiple pulse train interference as a time recorder[J]. Optics Express, 2011, 19(6): 4881-4889. doi: 10.1364/OE.19.004881
    [28] Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Opt Lett, 2009, 34(13): 1982-1984. doi: 10.1364/OL.34.001982
    [29] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5954-5960. doi: 10.1364/OE.14.005954
    [30] Wu H Z, Zhang F M, Liu T Y, et al. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser[J]. Optics Express, 2015, 23(24): 31582-31593. doi: 10.1364/OE.23.031582
    [31] Lee J, Kim S W, Kim Y J. Repetition rate multiplication of femtosecond light pulses using a phase-locked all-pass fiber resonator[J]. Optics Express, 2015, 23(8): 10117-10125. doi: 10.1364/OE.23.010117
    [32] Wu H Z, Zhang F M, Liu T Y, et al. Long distance measurement using optical sampling by cavity tuning[J]. Opt Lett, 2016, 41(10): 2366-2369. doi: 10.1364/OL.41.002366
    [33] Schuhler N, Salvade Y, Leveque S, et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement[J]. Opt Lett, 2006, 31(21): 3101-3103. doi: 10.1364/OL.31.003101
    [34] Zhu Z, Wu G. Dual-Comb Ranging[J]. Engineering, 2018, 4(6): 772-778. doi: 10.1016/j.eng.2018.10.002
    [35] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nat Photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [36] Xie Z, Liu Y, Li J, et al. Influence of the interferometric spectral bandwidth on the precision of large-scale dual-comb ranging[J]. Measurement, 2023, 2: 112842.
    [37] Liu Y, Xia W, He M, et al. Experimental realization and characterization of a two–color dual–comb system for practical large–scale absolute distance measurements[J]. Optics and Lasers in Engineering, 2022, 151: 106900. doi: 10.1016/j.optlaseng.2021.106900
    [38] 夏文泽, 刘洋, 赫明钊, 等. 双光梳非线性异步光学采样测距中关键参数的数值分析[J]. 物理学报, 2021, 70(18): 53-62.
    [39] Xie Z, Liu Y, He M, et al. Investigations on the non-ambiguity range extension of dual-comb ranging by repetition range variation [C]. SPIE: proceedings of the AOPC 2022: Optical Sensing and Imaging Technology, 2022.
    [40] Liu Y, Xie Z, He M, et al. Preliminary Investigations of Absolute Distance Measurement by the Dual-comb System with a Fiber Interferometric Scheme [C]. proceedings of the The 7th International Conference on Nanomanufacturing, 2021.
    [41] 邓向瑞, 梁宝敏, 肖华杰, 等. 温度代表性误差对基线测距的影响[J]. 计量科学与技术, 2020(12): 7-11. doi: 10.3969/j.issn.2096-9015.2020.12.02
    [42] 邾继贵, 郭思阳, 史慎东, 等. 面向先进装备制造业的室内空间测量定位系统[J]. 计测技术, 2018, 38(3): 91-98. doi: 10.11823/j.issn.1674-5795.2018.03.06
    [43] 杨凌辉, 杨学友, 劳达宝, 等. 采用光平面交汇的大尺寸坐标测量方法[J]. 红外与激光工程, 2010, 39(6): 1105-1109. doi: 10.3969/j.issn.1007-2276.2010.06.026
    [44] Shi S, Yang L, Lin J, et al. Omnidirectional angle constraint based dynamic six-degree-of-freedom measurement for spacecraft rendezvous and docking simulation[J]. Measurement Science and Technology, 2017, 29(4): 1-9.
    [45] 劳达宝, 崔成君, 王国民, 等. 飞秒激光跟踪仪跟踪光路的优化设计与分析[J]. 中国激光, 2019, 46(3): 184-191.
    [46] Wendt K, Franke M, Härtig F. Measuring large 3D structures using four portable tracking laser interferometers[J]. Measurement, 2012, 45(10): 2339-2345. doi: 10.1016/j.measurement.2011.09.020
    [47] Meiners-Hagen K, Bošnjakovic A, Köchert P, et al. Air index compensated interferometer as a prospective novel primary standard for baseline calibrations[J]. Measurement Science and Technology, 2015, 26(8): 084002. doi: 10.1088/0957-0233/26/8/084002
    [48] Liu Y, Röse A, Prellinger G, et al. Combining Harmonic Laser Beams by Fiber Components for Refractivity–Compensating Two-Color Interferometry[J]. J Lightwave Technol, 2020, 38(7): 1945-1952. doi: 10.1109/JLT.2019.2960473
    [49] Falaggis K , Ramirez-Andrade A H , Towers D , et al. Multi-wavelength phase unwrapping: a versatile tool for extending the measurement range, breaking the Nyquist limit, and encrypting optical communications[C]. SPIE Optical Engineering Applications Conference, 2018.
    [50] Coe P, Howell D, Nickerson R. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment[J]. Measurement Science and Technology, 2004, 15(11): 2175. doi: 10.1088/0957-0233/15/11/001
    [51] Guillory J, Truong D, Wallerand J-P, et al. Determination of the reference point of a radio telescope using a multilateration-based coordinate measurement prototype[J]. Precision Engineering, 2023, 4: 2.
  • 加载中
图(15)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  75
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 录用日期:  2023-11-16
  • 修回日期:  2023-12-10
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-02-18

目录

    /

    返回文章
    返回