留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大视场主动光学望远镜调节组件检测定标方法

安其昌 吴小霞 张景旭 李洪文

安其昌,吴小霞,张景旭,等. 大视场主动光学望远镜调节组件检测定标方法[J]. 计量科学与技术,2024, 68(4): 18-25 doi: 10.12338/j.issn.2096-9015.2023.0260
引用本文: 安其昌,吴小霞,张景旭,等. 大视场主动光学望远镜调节组件检测定标方法[J]. 计量科学与技术,2024, 68(4): 18-25 doi: 10.12338/j.issn.2096-9015.2023.0260
AN Qichang, WU Xiaoxia, ZHANG Jingxu, LI Hongwen. Detection and Calibration Method for Adjustment Components of Large Field of View Active Optical Telescopes[J]. Metrology Science and Technology, 2024, 68(4): 18-25. doi: 10.12338/j.issn.2096-9015.2023.0260
Citation: AN Qichang, WU Xiaoxia, ZHANG Jingxu, LI Hongwen. Detection and Calibration Method for Adjustment Components of Large Field of View Active Optical Telescopes[J]. Metrology Science and Technology, 2024, 68(4): 18-25. doi: 10.12338/j.issn.2096-9015.2023.0260

大视场主动光学望远镜调节组件检测定标方法

doi: 10.12338/j.issn.2096-9015.2023.0260
基金项目: 国家自然科学基金项目(12133009);中国科学院青年创新促进会(2020221)。
详细信息
    作者简介:

    安其昌(1988-),中国科学院长春光学精密机械与物理研究所副研究员,研究方向:大口径光机系统检测装调,邮箱:anjj@mail.ustc.edu.cn

  • 中图分类号: TB922

Detection and Calibration Method for Adjustment Components of Large Field of View Active Optical Telescopes

  • 摘要: 为了更好地对大视场主动光学望远镜进行调控。阐明了基于内外部度量系统对望远镜中调节组件进行检测定标的基本原理。对大视场主动光学望远镜定标过程进行了误差分析,并利用桌面实验实现了大视场主动光学望远镜运动部件检测方法的原理贯通。实现了非衍射均匀分光,克服了衍射分光杂散条纹多、分光角小的缺点,分散角高于100°,精度优于15 µm,角度精度优于3″,基于波前传感进行标定的精度优于10 µm,可有效提升大口径大视场望远镜调节元件的检定精度以及望远镜最终的成像质量。
  • 图  1  望远镜调节组件检测定标原理图

    Figure  1.  Schematic diagram of the detection and calibration principle for telescope adjustment components

    图  2  基于棱镜的空间机械-光学共基准测量原理图

    Figure  2.  Schematic diagram of space mechanical-optical co-reference measurement based on prisms

    图  3  基于棱镜的空间机械-光学共基准测试图

    Figure  3.  Space mechanical-optical co-reference test based on prisms

    图  4  三维坐标测量精度分析图

    Figure  4.  Precision analysis of 3D coordinate measurement

    图  5  基于曲率传感器的大口径大视场波前探测流程图

    Figure  5.  Flowchart of large-aperture, large field of view wavefront detection based on curvature sensors

    图  6  波前曲率传感进行仿真解算图

    Figure  6.  Simulation and solving of wavefront curvature sensing

    图  7  波前曲率传感测试实验

    Figure  7.  Wavefront curvature sensing testing experiment

  • [1] Yan H , Li H , Wang S , et al. Overview of the LAMOST survey in the first decade[J]. The Innovation, 2022, 3(2): 16
    [2] Gabriele U, Daniele V, Jacopo F, et al. Deformable lens for testing the performance of focal plane wavefront sensing using phase diversity[J]. In Proceedings of the Proc. SPIE, 2022, 1: 121856W.
    [3] Daniel C, Brian M, Joseph D A, et al. Piston-tip-tilt mirror array in the wide field phasing testbed for the Giant Magellan Telescope[J]. In Proceedings of the Proc. SPIE, 2022, 2: 121854I.
    [4] McLeod B, Bouchez A H, Catropa D, et al. The wide field phasing testbed for the Giant Magellan Telescope[J]. Astronomical Telescopes & Instrumentation, 2022, 12182(1218208): 1-16
    [5] 安其昌, 吴小霞, 张景旭, 等. 大口径巡天望远镜分区域曲率传感方法研究[J]. 中国光学(中英文), 2023, 16(2): 358-365.
    [6] Flaugher B, Diehl H T, Honscheid K, et al. The Dark Energy Camera[J]. The Astronomical Journal, 2015, 150(5): 1 .
    [7] Manuel A M, Phillion D W, Olivier S S, et al. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST)[J]. Optics Express, 2010, 18(2): 1528-1552. doi: 10.1364/OE.18.001528
    [8] Shiang Y, David F, Mark A. et al. Prime focus instrument of prime focus spectrograph for Subaru telescope[C]. Proceedings of SPIE, 2014.
    [9] Simons D A , Crampton D , Pat Côté, et al. Current status and future plans for the Maunakea Spectroscopic Explorer (MSE)[C]. Ground-based & Airborne Telescopes V. International Society for Optics and Photonics, 2014.
    [10] Holzlohner R, Taubenberger S, Rakich A, et al. Focal-plane wavefront sensing for active optics in the VST based on an analyti-cal optical aberration model[C]. Proceedings of SPIE, 2016 .
    [11] 范文强, 王志臣, 陈宝刚, 等 地基大口径拼接镜面主动控制技术综述[J]. 中国光学(中英文), 2020, 13(6): 1194-1208.
    [12] Wilhelm R , Luong B , Courteville A , et al. Dual-wavelength low-coherence instantaneous phase-shifting interferometer to measure the shape of a segmented mirror with subnanometer precision[J]. Applied Optics, 2008, 47(29): 5473-5491.
    [13] Codona J L , Doble N . James Webb Space Telescope segment phasing using differential optical transfer functions[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1: 029001.
    [14] Warren P G , Vosteen L L A , Draaisma F , et al. Wavefront sensor for the ESA-GAIA mission[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7439: 743914.
    [15] Ramsey L, Adams M, Barnes T, et al. Early performance and present status of Hobby Eberly Telescope [C]. In Advanced Technology Optical/IR Telescopes VI, 1998.
    [16] Stobie R, Meriing J, Buclaey D. Design of the Southern African Large Telescope [C]. In Optical Design, Materials, Fabrication, and Maintenance, 2000.
    [17] Su D, Cui X, Wang Y, et al. Large-sky-area multiobject fiber spectroscopic telescope (LAMOST) and its key technology[J]. Astronomical Telescopes and Instrumentation, 1998, 1: 76-90.
    [18] 赵惠, 易红伟, 樊学武, 等. 位相差异波前传感技术在大型空间光学相机中的应用[J]. 光子学报, 2017, 46(1): 73-84.
    [19] Yue D, Xu S, Nie H, et al. Co-phasing of the segmented mirror and image retrieval based on phase diversity using a modified algorithm.[J]. Applied Optics, 2015, 54(26): 7917-7924. doi: 10.1364/AO.54.007917
    [20] Eguchi A, Milster T D. Single-shot phase retrieval with complex diversity[J]. Optics Letters, 2019, 44(21): 5108-5111. doi: 10.1364/OL.44.005108
    [21] SAIF B, CHANEY D, GREENFIELD P, et al. Measurement of picometer-scale mirror dynamics[J]. Applied optics, 2017, 56(23): 6457-6465. doi: 10.1364/AO.56.006457
    [22] FEINBERG L D, DEAN B H, ARONSTEIN D L, et al. TRL-6 for JWST wavefront sensing and control[C]. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, 2007.
    [23] KNIGHT J S, ACTON D S, LIGHTSEY P, et al. Integrated telescope model for the James Webb space telescope[C]. Modeling, Systems Engineering, and Project Management for Astronomy V, 2012.
    [24] ACTON D S, TOWELL T, SCHWENKER J, et al. End-to-end commissioning demonstration of the James Webb Space Telescope[C]. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, 2007.
    [25] ACTON D S, ATCHESON P, CERMAK M, et al. James Webb Space Telescope wavefront sensing and control algorithms[C]. Optical, Infrared, and Millimeter Space Telescopes, 2004.
    [26] CHEN Wen. Optical cryptosystem based on single-pixel encoding using the modified Gerchberg–Saxton algorithm with a cascaded structure[J]. Journal of the Optical Society of America, 2016, 33(12): 2305-2311. doi: 10.1364/JOSAA.33.002305
    [27] 徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展, 2023, 60(3): 91-110.
    [28] XU Xin, TAN Yidong, MU Henglin, et al. Laser Interferometric Multi-Degree-of-Freedom Measurement Technology in Space Gravitational-Wave Detection[J]. Laser and Optoelectronics Progress, 2023, 60(3): 91-110.
    [29] ANDRE A N, SANDOZ P, MAUZE B, et al. Sensing one nanometer over ten centimeters: A microencoded target for visual in-plane position measurement[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1193-1201. doi: 10.1109/TMECH.2020.2965211
    [30] CONTRERAS J, LIAHTSEY P. Optical design and analysis of the James Webb Space Telescope: optical telescope element[C]. Novel Optical Systems Design and Optimization VII, 2004.
  • 加载中
图(7)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  36
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 录用日期:  2023-12-22
  • 修回日期:  2023-12-22
  • 网络出版日期:  2024-04-19
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回