Investigating Measurement Techniques for Assessing Noise Reduction in Active Noise-Cancelling Earphones
-
摘要: 研究主动降噪耳机性能测试的实验条件和参数设置,对于行业标准的制定,以及相关企业进行产品的测试,具有重要的意义。针对噪声源的布放方式和数量选取对耳机降噪性能测试的影响,选取了三种有源降噪耳机,在消声室环境下,选用不同数量的声源布放于不同的方位角,对比测试了耳机的主动降噪量,分析了在不同噪声源条件下的主动降噪性能。实验结果表明,在耳机的主要工作频带内,将单个声源布放于不同角度下多次测量结果平均,可以代替使用八个声源进行测试的结果。使用四个声源在相应角度下两次测量结果的平均,与欧洲电信标准协会现行标准的八声源测试方法所得到的结果非常接近。因此,在耳机的主动降噪性能测试中,可以用单个声源在多个角度布放,分别测量降噪性能,用测量结果的平均值代替八个声源同时发声时的测量结果。更精确的测量方法是使用四个声源放置在相应的角度下进行两次测试并对结果进行平均。两种测试方法在简化测量系统的同时,保证了测量结果的可靠性。Abstract: Investigating the appropriate experimental conditions and parameter settings for evaluating active noise-cancelling earphones’ performance is crucial for developing industry standards and conducting enterprise product tests. This study utilizes three types of active noise-cancelling earphones to explore the effects of sound source layout and quantity on noise reduction measurements. In an anechoic chamber, various numbers of sound sources are positioned at different azimuthal angles to measure earphones’ noise reduction capabilities. The study analyzes the earphones’ active noise reduction performance under varying sound source conditions. Results indicate that in the earphones’ primary operational frequency band, using a single sound source placed at different angles and averaging these measurements can substitute for testing with eight simultaneous sources. The mean of two measurements with four sources at corresponding angles closely aligns with the European Telecommunications Standards Institute’s current eight-source testing standard. Thus, for active noise reduction assessment, using a single sound source at multiple angles for separate noise reduction measurements, and averaging these results, can effectively replace the need for eight simultaneous sources. A more precise approach involves two measurements with four sources at designated angles, with the results averaged. These methodologies simplify the testing apparatus while ensuring measurement reliability.
-
表 1 实验声源数量及角度设置
Table 1. Experiment settings: Number and azimuthal angles of sound sources
声源数量 测试角度 1 (1)0°; (2)45°; (3)90°; (4)135°; (5)180° 2 (1)0°,180°; (2)90°,270° 4 (1)0°, 90°, 180°, 270°; (2)45°, 135°, 225°, 315° 8 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° -
[1] 郑保宾, 唐文其. 耳机被动降噪特性分析[J]. 电声技术, 2020, 44(3): 33-36. doi: 10.16311/j.audioe.2020.03.010 [2] 张亚东, 郑保宾. 前馈式降噪耳机设计[J]. 电声技术, 2018, 42(4): 1-3. [3] ZHONG X, WU L, NIU F, et al. Objective assessment on earmuff behavior in windy condition[J]. Applied Acoustics, 2023, 213: 109648. doi: 10.1016/j.apacoust.2023.109648 [4] CHU Y, ZHAO S, HE L, et al. Wind noise suppression in filtered-x least mean squares-based active noise control systems[J]. The Journal of the Acoustical Society of America, 2022, 152(6): 3340-3345. doi: 10.1121/10.0016443 [5] NIU F, QIU X, ZHANG D. Effects of active noise cancelling headphones on speech recognition[J]. Applied Acoustics, 2020, 165: 107335. doi: 10.1016/j.apacoust.2020.107335 [6] 张鸿翔, 魏金光. 主动降噪耳机数字滤波器设计研究[J]. 电声技术, 2023, 47(3): 92-98. [7] 陈克安, 马远良. 自适应有源噪声控制: 原理, 算法及实现[M]. 西安: 西北工业大学出版社, 1993. [8] HAYKIN S. Adaptive filter theory[M]. 5nd ed. New Jersey: Pearson, 2014. [9] 周亚丽, 张奇志. 有源噪声与振动控制——原理, 算法及实现[M]. 北京: 清华大学出版社, 2014. [10] 冯志鸿. 耳机主动降噪技术的分析与研究[J]. 数字技术与应用, 2019, 37(3): 114-115. doi: 10.19695/j.cnki.cn12-1369.2019.03.65 [11] 谢豫娟, 谢锡海. 基于改进的FXLMS算法的主动降噪耳机系统研究[J]. 电声技术, 2021, 45(6): 71-75. doi: 10.16311/j.audioe.2021.06.017 [12] 冷仓田, 王德祯, 周邵萍. 有源噪声控制中基于神经网络的次级通道辨识优化[J]. 华东理工大学学报(自然科学版), 2021, 47(6): 761-768. doi: 10.14135/j.cnki.1006-3080.20200928001 [13] LI FU WU, QIU CENG HU, JINGJING CHEN. A self-correcting adaptive algorithm for active noise control[J]. Journal of Nanjing University (Natural Sciences), 2022, 58(2): 364-368. [14] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2001. [15] 费艳锋, 曹祖杨, 李坚维. 关于主动降噪耳机的研究[J]. 电声技术, 2020, 44(5): 38-40. doi: 10.16311/j.audioe.2020.05.008 [16] 樊哲宇, 赵航, 李美敏, 等. 噪声环境下使用主动降噪耳机对听力的保护效果研究[J]. 中国听力语言康复科学杂志, 2020, 18(2): 103-105. doi: 10.3969/j.issn.1672-4933.2020.02.007 [17] LIEBICH S, RICHTER J G, FABRY J, et al. Direction-of-arrival dependency of active noise cancellation headphones[C]. Noise Control and Acoustics Division Conference. American Society of Mechanical Engineers, 2018. [18] 国家质量监督检验检疫总局. 声学 护听器 第3部分: 使用专用声学测试装置测量耳罩式护听器的插入损失: GB/T7584.3—2011[S]. 北京: 中国标准出版社, 2012. [19] 国家质量监督检验检疫总局. 声系统设备 第7部分: 头戴耳机和耳机测量方法: GB/T12060.7—2013[S]. 北京: 中国标准出版社, 2013. [20] ETSI. Speech and multimedia Transmission Quality (STQ); Test Methods and Performance Requirements for Active Noise Cancellation Headsets and other Earphones (V1.2. 1): ETSI TS 103 640-2022 [S]. France: ETSI, 2022. [21] ANG L Y L, KOH Y K, LEE H P. The performance of active noise-canceling headphones in different noise environments[J]. Applied Acoustics, 2017, 122: 16-22. doi: 10.1016/j.apacoust.2017.02.005 [22] GULDENSCHUH M, SONTACCHI A, PERKMANN M, et al. Assessment of active noise cancelling headphones[C]. 2012 IEEE Second International Conference on Consumer Electronics-Berlin (ICCE-Berlin). IEEE, 2012: 299-303. [23] HUANG C R, CHANG C Y, KUO S M. Directional dependency for feedforward active noise control systems with in-ear headphones[C]. 2021 International Conference on System Science and Engineering (ICSSE). IEEE, 2021: 185-188. [24] 吴王震. 降噪耳机降噪性能测试方法研究[J]. 电子质量, 2020(3): 34-36. [25] FARHANG-BOROUJENY B. Adaptive filters: theory and applications[M]. Hoboken: John Wiley & Sons, 2013. [26] 张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 2002. [27] HANSEN C, SNYDER S, QIU X, et al. Active control of noise and vibration[M]. 2nd ed. London: CRC press, 2012. [28] 许昊, 王琦, 许颖, 等. 耳罩式护听器检测装置的研究[J]. 计量技术, 2018(10): 34-38. [29] 郑云山, 牛锋, 钟波. 平方反比规律校准消声室和数据处理[J]. 计量科学与技术, 2022, 66(7): 54-57. [30] 鲁光军, 杜富荣. 在PULSE 系统中测量声压级的技巧[J]. 计量科学与技术, 2021, 65(11): 8-10. doi: 10.12338/j.issn.2096-9015.2019.0335