Study on the Detection Method for Ultrasonic Stable Cavitation Threshold
-
摘要: 稳态空化是指水介质中的微泡在较低的声压诱导下作周期性振荡运动。相较于瞬态空化,稳态空化温升效果稳定可控,具有更好应用前景。搭建了稳态空化阈值监测平台,采用被动空化监测方法对不同含氧量的水介质中的聚焦声场作用下的稳态空化活动进行监测,以次谐波的出现作为稳态空化活动的判定标准。结合窄带机械滤波法、多次平均技术,对高灵敏度水听器接收的声信号进行滤波和降噪。最终将采集到的声信号进行频谱分析,探究在超声作用下不同含氧量与次谐波出现的规律,实验结果表明:多次平均采集的方法可以有效降低噪声的干扰,改善信噪比,大大提高系统对微弱声信号的检测能力;随着含氧量的增加,稳态空化阈值随之降低,与理论规律相符合。Abstract: Stable cavitation, characterized by the periodic oscillation of microbubbles in water under low acoustic pressure, contrasts with transient cavitation due to its stable and controllable temperature increase, presenting more promising applications. This paper describes the construction of a monitoring platform for the stable cavitation threshold, employing a passive cavitation detection method. The method monitors stable cavitation activity in focused acoustic fields in water with varying oxygen contents, using the emergence of subharmonics as an indicator of stable cavitation. Combining narrow-band mechanical filtering and multiple averaging techniques, the acoustic signals received by high-sensitivity hydrophones are filtered and noise-reduced. Spectral analysis of these signals explores the relationship between oxygen content and the appearance of subharmonics under ultrasonic influence. The results demonstrate that multiple averaging effectively reduces noise interference and improves signal-to-noise ratio, enhancing the detection of weak signals. Additionally, increasing oxygen content lowers the stable cavitation threshold, aligning with theoretical expectations.
-
Key words:
- metrology /
- stable cavitation /
- passive cavitation detection /
- cavitation threshold /
- ultrasonic /
- signal analysis
-
表 1 第一次除气水实验数据
Table 1. First experimental data in degassed water
功率(W) 声压(kPa) 含氧量(mg/L) 7.42 412.05 2 4.41 315.44 3 2.93 255.06 4 1.75 194.68 5 1.36 170.53 6 -
[1] IZADIFAR Z, BABYN P, CHAPMAN D. Ultrasound cavitation/microbubble detection and medical applications[J]. Journal of Medical and Biological Engineering, 2019, 39(3): 259-276. doi: 10.1007/s40846-018-0391-0 [2] 郭策. 功率超声珩磨磨削区空化泡动力学及其辐射声场的研究[D]. 太原: 中北大学, 2013 [3] 夏青青, 刘俐. 超声联合微泡辅助溶栓的研究进展[J]. 心血管病学进展, 2019, 40(4): 564-568. [4] 许涛, 周畅. 靶向微泡介导超声辅助溶栓技术研究进展[J]. 实用医学杂志, 2022, 38(10): 1187-1192. doi: 10.3969/j.issn.1006-5725.2022.10.003 [5] 唐娜娇. 超声微泡增强乏血供肿瘤的血流灌注及增加阿霉素释药的实验研究[D]. 重庆: 中国人民解放军陆军军医大学, 2021. [6] 高峰, 贠莹, 杨秀娜, 等. 超声波强化技术在化工过程中的应用进展[J]. 当代石油石化, 2022, 30(8): 22-27. [7] Sarvesh S Sabnis, Parag R Gogate. Ultrasound assisted size reduction of dadps based on recrystallization[J]. Ultrason Sonochem, 2019, 54: 198-209. doi: 10.1016/j.ultsonch.2019.01.037 [8] Mahamuni N N, Adewuyi Y G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation[J]. Ultrasonics Sonochemistry, 2009, 17(6): 990-1003. [9] 刘二蒙, 冯拓, 高献礼, 等. 超声波加速液态发酵食品风味成熟研究进展[J]. 食品与发酵工业, 2021, 47(17): 283-289. [10] 朱彬, 唐宏刚, 张晋, 等. 超声处理对羊肉冷藏期间色泽稳定性和货架期品质的影响[J]. 浙江农业科学, 2023, 64(10): 2492-2498. [11] Neppiras E A. Subharmonic and Other Low-Frequency Emission from Bubbles in Sound-Irradiated Liquids[J]. Journal of Sound & Vibration, 1969, 10(3B): 176-180. [12] None. Cavitation detection: the use of subharmonics[J]. Ultrasonics, 1968, 6(1): 64. [13] Eller, Anthony. Generation of Subharmonics of Order One-Half by Bubbles in a Sound Field[J]. Hournal of the Acoustical Society of America, 1968, 46(3B): 368-369. [14] Eller, Anthony I. Subharmonic response of bubbles to underwater sound[J]. Journal of the Acoustical Society of America, 1974, 55(4): 871-873. doi: 10.1121/1.1914615 [15] Prosperetti A. Nonlinear oscillations of gas bubbles in liquids: steady-state solutions[J]. Journal of the Acoustical Society of America, 1974, 56(3): 878-885. doi: 10.1121/1.1903341 [16] Prosperetti A. Application of the subharmonic threshold to the measurement of the damping of oscillating gas bubbles[J]. The Journal of the Acoustical Society of America, 1977, 61(1): 11-16. doi: 10.1121/1.381273 [17] Frohly J, Labouret S, Bruneel C, et al. Ultrasonic cavita-tion monitoring by acoustic noise power measurement[J]. The Journal of the Acoustical Society of America, 2000, 108(5 Pt 1): 2012-2020. [18] BSI. Measurement of cavitation noise in ultrasonic baths and ultrasonic reactors: IEC/TS 63001-2019[S]. Switzerland, 2019. [19] Johansen K , Song J H , Prentice P . Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound[J]. Ultrasonics Sonochemistry, 2018, 43: 146-155. [20] 孙廷宇. Experimental Study on the Regenerative Repair of Normal Liver Tissue in Rabbits after Damage Caused by High Intensity Focused Ultrasound[D]. 重庆: 重庆医科大学, 2022. [21] 周芳, 王永领, 冯炼, 等. 基于稳健最小方差的高强度聚焦超声被动空化成像及其在损伤监测中的优势分析[J]. 中国医学物理学杂志, 2023, 40(5): 568-575. [22] Brayman A A , Chen W S , Matula T J , et al. The pulse duration dependence of inertial cavitation dose and hemolysis[C]. IEEE, 2002. [23] 罗楚文, 孔超颖, 汤朝晖. 超声化学在生物医学中应用的研究进展[J]. 化学学报, 2023, 81(7): 836-842. [24] 周迪, 黄继秀, 宗瑜瑾, 等. 基于被动空化监测的兔腹主动脉空蚀损伤评价[J]. 陕西师范大学学报(自然科学版), 2020, 48(3): 67-73. [25] 田淑爱. Research on Ultrasonic Imaging Algorithm Based on Dynamic Microbubble Model[D]. 太原: 中北大学, 2021. [26] 田淑爱, 丁婷, 田志鑫, 等. 结合空化微泡母小波变换的高空化噪声比超快速主动空化成像方法[J]. 应用声学, 2020, 39(6): 849-856. [27] 郑昊, 李雁浩, 桂逢烯, 等. 高强度聚焦超声治疗的实时被动空化检测系统及其实验研究[J]. 声学技术, 2021, 40(6): 788-794. [28] 曹晟辰, 阎兆立, 程晓斌, 等. 主被动方法融合的空化在线监测平台[C]. 中国声学学会, 2011. [29] Neppiras E A. Acoustic cavitation thresholds and cyclic processes[J]. Ultrasonics, 1980, 18(5): 201-209. doi: 10.1016/0041-624X(80)90120-1 [30] Jean-Louis M , Peter L , Dominique C . Long-lasting stable cavitation[J]. Journal of the Acoustical Society of America, 2003, 113(3): 1426-1430. [31] 汤佳琛. 基于随机共振的微弱信号检测模型及应用研究[D]. 北京: 北京科技大学, 2021.