Application of the Residual Period Method in Low-Frequency Hydrophone Sensitivity Calibration
-
摘要: 为解决水听器灵敏度校准过程中由于水箱尺寸有限,水池中的反射无法避免,低频段存在反射叠加等导致低频段难以校准的问题,在自由场比较法的基础上通过对残周期信号的幅度、频率、相位三参数进行拟合,降低了灵敏度校准的频率下限。实验结果显示,该方法可实现2.5~20 kHz频段的灵敏度校准,误差在0.6dB之内,能够很好地消除由反射声场引起的校准误差,验证了该方法在低频校准中应用的有效性。然而残周期法在实际应用中也存在一些局限性,例如环境噪声、反射声场的衰减以及非线性等因素会对残周期法的准确性产生一定的影响。Abstract: This study addresses the challenges in calibrating hydrophone sensitivity at low frequencies, which arise from limitations in water tank dimensions, unavoidable reflections in water pools, and superposition of reflections in the low-frequency range. Building upon the free-field comparison method, we propose a technique that fits the amplitude, frequency, and phase of residual periodic signals to lower the frequency limit for sensitivity calibration. Experimental results demonstrate that this method enables sensitivity calibration in the 2.5-20 kHz frequency range, with errors within 0.6 dB. It effectively eliminates calibration errors caused by reflected sound fields, validating its efficacy in low-frequency calibration. However, the residual period method has some practical limitations. Factors such as environmental noise, attenuation of reflected sound fields, and nonlinear effects can impact the method's accuracy. Despite these challenges, the proposed approach shows promise in expanding the frequency domain for hydrophone calibration, particularly in low-frequency ranges where traditional methods face significant obstacles.
-
表 1 残周期拟合法在不同周期长度下的相对误差
Table 1. Relative error of residual period fitting method for different period lengths
残周期长度 相对误差/% 残周期长度 相对误差/% 0.2T 6.33 1T 0.47 0.35T 5.61 1.1T 0.58 0.5T 2.33 1.2T 0.32 0.6T 2.01 1.4T 0.15 0.7T 1.43 1.6T 0.02 0.8T 1.02 1.8T 0 0.9T 0.77 2T 0 -
[1] 刘伯胜, 雷家煜. 水声学原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2010. [2] 孙俊东, 尚大晶. 非消声水池中水听器的快速测量方法[C]. 上海: 《声学技术》编辑部, 2017. [3] 曾跃胜. 水听器灵敏度自动测量系统设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018. [4] 陈毅, 平自红, A E Isaev, 等. 250Hz~8kHz频率范围水听器自由场校准补充比对[J]. 计量学报, 2016, 37(1): 84-89. doi: 10.3969/j.issn.1000-1158.2016.01.20 [5] International Electrotechnical Commission. Measurement microphones Part 6: Electrostatic actuators for determination of frequency response (Edition 1.0): IEC 610946 Ed. 1.0 b: 2004[S]. IEC, 2004. [6] 国家质量监督检验检疫总局 . 工作标准传声器(静电激励器法)检定规程 : JJG 175 2015[S]. 北京: 中国标准出版社, 2015. [7] International Electrotechnical Commission. Electroacoustics Measurement microphones Part 5: Methods for pressure calibration of working standard microphones by comparison (Edition 2.0): IEC 61094 5 Ed. 2.0: 2016[S]. IEC, 2016. [8] 国家质量监督检验检疫总局 . 工作标准传声器(耦合腔比较法)检定规程: JJG 1019-2007[S]. 北京: 中国标准出版社, 2007. [9] International Electrotechnical Commission. Measurement microphones Part 8: Methods for determining the free field sensitivity of working standard microphones by comparison (Edition1.0): IEC 610948 Ed. 1.0: 2012[S]. IEC, 2012. [10] 国家市场监督管理总局 . 工作标准传声器(自由场比较法)检定规程: JJG 1172-2019[S]. 北京: 中国标准出版社, 2019. [11] Bobber R J. Underwater Electroacoustic Measurements[M]. US: Naval Research Laboratory, 1970. [12] 孙俊东. 混响场中水声换能器互易校准研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. [13] 弗·亚·休罗夫. 海洋矢量声学[M]. 北京: 国防工业出版社, 2011. [14] 陆安山. 互易定理的证明及应用[J]. 广西师院学报(自然科学版), 1999(4): 23-26. [15] 王月兵, 王世全. 激光反射全息技术在超声换能器近场测量中的应用[J]. 声学学报, 2012, 37(1): 6. [16] 王世全, 黄勇军, 陈毅. 1kHz~200kHz水听器灵敏度光学方法校准[C]. 2015中国西部声学学术交流会论文集, 2015. [17] 王月兵, 黄勇军. 使用激光测振技术校准水听器灵敏度[J]. 声学学报, 2001(1): 29-33. doi: 10.3321/j.issn:0371-0025.2001.01.006 [18] 王世全, 徐卓华, 吴博越, 等. 转移耦合腔互易法水听器校准方法研究[J]. 计量科学与技术, 2023, 67(11): 62-70. doi: 10.12338/j.issn.2096-9015.2023.0292 [19] 仝乐. 基于小水箱混响场的互易法水听器校准研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. [20] 梁志国. 非均匀采样条件下残周期正弦波形的最小二乘拟合算法[J]. 计量学报, 2021, 42(3): 358-364. doi: 10.3969/j.issn.1000-1158.2021.03.16 [21] 阎福旺, 凌青, 栾经德, 等. 水下电声测量技术[M]. 北京: 海洋出版社, 1999: 11. [22] 陈玉红. 水声换能器电声特性自动测试技术研究[D]. 南京: 东南大学, 2019. [23] 全国声学标准化技术委员会. 声学 水声换能器自由场校准方法: GB/T 3223-94 [S]. 北京: 中国标准出版社, 1994. [24] 郑士杰, 袁文俊, 缪荣兴, 等. 水声计量测试技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 1995: 1. [25] 贾梦雯. 高静水压下换能器声学参量测量方法研究[D] . 杭州: 中国计量大学, 2020. [26] IEC. Underwater acoustics-Hydrophones-Calibration in the frequency range 0.01 Hz to 1 MHz: IEC 60565: 2006 [S]. IEC, 2006. [27] 梁志国. 四参数正弦波组合式拟合算法[J]. 计量学报, 2021, 42(12): 1559-1566. doi: 10.3969/j.issn.1000-1158.2021.12.02 [28] 张韬, 苑秉成, 魏鹏举. 水声换能器复数灵敏度校准方法[J]. 四川兵工学报, 2011, 32(8): 86-88. [29] 陈毅, 贾广慧, 费腾, 等. 5 Hz~10 kHz频率范围矢量水听器校准国际主导比对[J]. 计量学报, 2020, 41(10): 1279-1283. doi: 10.3969/j.issn.1000-1158.2020.10.16 [30] 于龙晶, 王月兵, 唐佳玄, 等. 非刚性管中换能器灵敏度的测量方法研究[J]. 计量学报, 2022, 43(9): 1192-1199. doi: 10.3969/j.issn.1000-1158.2022.09.14