Development of a Certified Reference Material for Fumonisin B1 Purity
-
摘要: 为更好的满足农产品质量安全检测需求,保证检测结果的准确性、可靠性和可溯源性,研制了伏马毒素B1(FB1)纯度标准物质。以实验室自主分离纯化获得的FB1为候选物,通过质谱、红外光谱、核磁共振谱等对其进行定性鉴定。采用质量平衡法和定量核磁法两种不同原理的方法对候选物的纯度进行定值,其中质量平衡法中采用面积归一化法、卡尔费休法、气相色谱串联质谱法和电感耦合等离子体质谱法,分别对候选物中主成分(FB1)、水分、挥发性杂质和非挥发性杂质含量进行测定。此外,开展了均匀性检验、稳定性考察,并对研制过程中产生的不确定度进行了系统的评定。结果表明:FB1纯度标准物质量值为99.1%,扩展不确定度为0.3%(k=2),均匀性良好,且满足12个月的稳定性要求。研制的FB1纯度标准物质获得国家二级标准物质证书,编号为GBW(E)100550,能够用于农产品中FB1的定性和定量检测、方法评价以及FB1量值溯源体系的建立。Abstract: To enhance the accuracy, reliability, and traceability of agricultural product quality safety testing, a certified reference material (CRM) for fumonisin B1 (FB1) purity was developed. The CRM candidate, obtained through laboratory purification of FB1, was qualitatively identified using mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The purity of the candidate was quantified using both mass balance and quantitative nuclear magnetic resonance methods. The mass balance method included area normalization, the Karl Fischer method, gas chromatography-tandem mass spectrometry, and inductively coupled plasma mass spectrometry to determine the main component, moisture, volatile and non-volatile impurity contents. Furthermore, homogeneity tests and stability studies were conducted, along with systematic uncertainty evaluations. The results indicated that the FB1 CRM has a purity value of 99.1% with an extended uncertainty of 0.3% (k=2), exhibiting good homogeneity and fulfilling a 12-month stability requirement. The developed FB1 CRM, certified as a national secondary standard material (GBW (E) 100550), is suitable for qualitative and quantitative detection, method evaluation, and establishing a traceability system for FB1 in agricultural products
-
表 1 FB1标准物质候选物的质量平衡法定值结果
Table 1. Quantitative determination of the FB1 certified reference material candidate using the mass balance method
(%) 项目 结果 平均值 标准偏差 主成分纯度 99.31 99.31 0.031 99.29 99.32 99.31 99.29 99.31 水分含量 0.143 0.139 0.003 0.136 0.134 0.141 0.143 0.137 无机离子杂质 0.043 0.050 0.005 0.057 0.051 0.044 0.055 0.050 纯度 99.12 表 2 FB1物质候选物均匀性数据与检验结果
Table 2. Data analysis and homogeneity testing (F-test) of the FB1 certified reference material candidate
(%) 瓶号 1 2 3 1 99.35 99.34 99.31 2 99.35 99.33 99.34 3 99.29 99.29 99.32 4 99.34 99.28 99.31 5 99.32 99.27 99.31 6 99.30 99.32 99.29 7 99.26 99.32 99.34 8 99.28 99.31 99.32 9 99.29 99.32 99.33 10 99.30 99.29 99.25 11 99.34 99.29 99.31 12 99.34 99.28 99.37 13 99.34 99.29 99.31 14 99.29 99.31 99.32 15 99.32 99.31 99.28 平均值 99.31 组间方差(Mbetween) 0.000671 组内方差(Mwithin) 0.000667 F (Mbetween/Mwithin) 1.01 F0.05(14, 30) 2.04 表 3 FB1物质候选物稳定性数据与检验结果
Table 3. Analysis of short-term and long-term stability (t-test) of the FB1 certified reference material candidate
(%) 时间(天) 短期稳定性 时间(月) 长期稳定性 −20 ℃ 4 ℃ 60 ℃ −20 ℃ 0 99.34 99.31 99.29 0 99.32 2 99.31 99.29 99.31 1 99.29 4 99.32 99.33 99.32 3 99.31 6 99.29 99.30 99.31 6 99.33 8 99.31 99.31 99.30 12 99.29 β1 −0.0040 0.0005 0.0010 β1 −0.0010 β0 99.330 99.306 99.302 β0 99.313 s 0.0151 0.0170 0.0126 s 0.0198 s(β1) 0.0024 0.0027 0.0020 s(β1) 0.0021 t0.95, 3 3.18 3.18 3.18 t0.95, 3 3.18 s(β1)·t0.95,3 0.0076 0.0086 0.0064 s(β1)·t0.95, 3 0.0065 表 4 FB1标准物质候选物不确定度评定结果
Table 4. Evaluation of uncertainties associated with the developed FB1 certified reference material candidate
来源 公式 不确定度/% 均匀性(ubb) $ {{u}}_{{{\mathrm{bb}}}}{=}\sqrt{\dfrac{{{M}}_{{{\mathrm{between}}}}{-}{{M}}_{{{\mathrm{within}}}}}{{n}}} $ 0.0012 长期稳定性(ulst) $ {{u}}_{{{\mathrm{lts}}}}={s(}{{\beta }}_{{1}}{)}\times {t} $ 0.0247 短期稳定性(usts) $ {{u}}_{{{\mathrm{sts}}}}={s(}{{\beta }}_{{1}}{)}\times {t} $ 0.0215 质量平衡法(uMB) $ {{u}}_{{{\mathrm{MB}}}}{}{=}{P}_{{{\mathrm{MB}}}}\times \sqrt{{\left[\dfrac{{u}\left({{P}}_{{0}}\right)}{{{P}}_{{0}}}\right]}^{{2}}{+}\dfrac{{{[}{u}{(}{{X}}_{{{\mathrm{W}}}}{)]}}^{{2}}{+}{{[}{u}{(}{{X}}_{{{\mathrm{NV}}}}{)]}}^{{2}}}{{{(1-}{{X}}_{{{\mathrm{W}}}}{-}{{X}}_{{{\mathrm{NV}}}}{)}}^{{2}}}} $ 0.0513 定量核磁法(uqNMR) $ {{u}}_{{ {\mathrm{}}}}={{P}}_{{{\mathrm{FB1}}}}\sqrt{{\left[\dfrac{{u}{(}{{I}}_{{{\mathrm{FB1}}}}/{{I}}_{{{\mathrm{std}}}}{)}}{{{I}}_{{{\mathrm{FB1}}}}{/}{{I}}_{{{\mathrm{std}}}}}\right]}^{{2}}{+}{\left[\dfrac{{u}{(}{{M}}_{{{\mathrm{FB1}}}}{)}}{{{M}}_{{{\mathrm{FB1}}}}}\right]}^{{2}}{+}{\left[\dfrac{{u}{(}{{M}}_{{{\mathrm{std}}}}{)}}{{{M}}_{{{\mathrm{std}}}}}\right]}^{{2}}{+}{\left[\dfrac{{u}{(}{{m}}_{{{\mathrm{std}}}}{)}}{{{m}}_{{{\mathrm{std}}}}}\right]}^{{2}}{+}{\left[\dfrac{{u}{(}{{m}}_{{{\mathrm{FB1}}}}{)}}{{{m}}_{{{\mathrm{FB1}}}}}\right]}^{{2}}{+}{\left[\dfrac{{u}{(}{{P}}_{{{\mathrm{std}}}}{)}}{{{P}}_{{{\mathrm{std}}}}}\right]}^{{2}}} $ 0.2821 定值合成不确定度(uchar) $ {{u}}_{{{\mathrm{char}}}}{=}\dfrac{\sqrt{{{u}}_{{{\mathrm{MB}}}}^{{2}}{+}{{u}}_{{{\mathrm{qNMR}}}}^{{2}}}}{{2}} $ 0.1434 合成不确定度(uCRM) $ {{u}}_{{{\mathrm{CRM}}}}{=}\sqrt{{{u}}_{{{\mathrm{char}}}}^{{2}}{+}{{u}}_{{{\mathrm{bb}}}}^{{2}}{+}{{u}}_{{{\mathrm{sts}}}}^{{2}}{+}{{u}}_{{{\mathrm{lst}}}}^{{2}}} $ 0.1471 扩展不确定度(U) U=k×uCRM, k=2 0.3 -
[1] KAMLE M, MAHATO D K, DEVI S, et al. Fumonisins: Impact on agriculture, food, and human health and their management strategies[J]. Toxins, 2019, 11(6): 328. doi: 10.3390/toxins11060328 [2] 郭志青, 张霞, 刁立功, 等. 镰刀菌及其伏马毒素的危害和防控[J]. 山东农业科学, 2022, 54(1): 157-164. [3] PONCE-GARCíA N, SERNA-SALDIVAR S O, GARCIA-LARA S. Fumonisins and their analogues in contaminated corn and its processed foods – a review [J]. Food Additives & Contaminants: Part A, 2018: 2183-2203. [4] CHEN J, WEI Z, WANG Y, et al. Fumonisin B1 : mechanisms of toxicity and biological detoxification progress in animals [J]. Food and Chemical Toxicology, 2021, 149(3): 111977. [5] DEEPTHI B V, SOMASHEKARAIAH R, POORNACHANDRA R K, et al. Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers[J]. Frontiers in Microbiology, 2017, 8: 2317. doi: 10.3389/fmicb.2017.02317 [6] SORIANO J M, GONZáLEZ L, CATALá A I. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1[J]. Progress in Lipid Research, 2005, 44(6): 345-56. doi: 10.1016/j.plipres.2005.09.001 [7] OSTRY V, MALIR F, TOMAN J, et al. Mycotoxins as human carcinogens-the IARC Monographs classification[J]. Mycotoxin research, 2017, 33: 65-73. doi: 10.1007/s12550-016-0265-7 [8] U. S. Food and Drug Administration. guidance for industry: fumonisin levels in human foods and animal feeds, final guidance[EB/OL].https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds. [9] The codex committee on food additives and contaminants. general standard for contaminants and toxins in food and feed : CODEX STAN 193-1995 [S]. Washington DC: FAO, 1995. [10] The Commission of the European Communities. setting maximum levels for certain contaminants in food stuffs : EC No 1881/2006 [S]. Brussel: official journal of the European Union, 2006. [11] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料卫生标准: GB 13078-2017[S]. 北京: 中国标准出版社, 2017. [12] 谢刚, 王松雪. 粮油真菌毒素检测技术及标准物质研究进展[C]. 北京: 国家真菌毒素防控科技创新联盟成立大会暨第一届中国真菌毒素大会论文集, 2016. [13] 韩铮, 郭文博, 范楷, 等. 真菌毒素检测及相关标准物质制备技术研究 [C]. 北京: 国家真菌毒素防控科技创新联盟成立大会暨第一届中国真菌毒素大会论文集, 2016. [14] 卢晓华, 薄梦, 吴雪, 等. 标准物质领域发展现状及趋势[J]. 化学试剂, 2022, 44(10): 1403-1410. [15] GUO Z, LI X, LI H. Certified reference materials and metrological traceability for mycotoxin analysis [M]. Oxford University Press, 2019: 1695-707. [16] TANGNI E K, DEBONGNIE P, HUYBRECHTS B, et al. Towards the development of innovative multi-mycotoxin reference materials as promising metrological tool for emerging and regulated mycotoxin analyses[J]. Mycotoxin Research, 2016, 33(1): 1-10. [17] OLIVARES I R B, SOUZA G B, NOGUEIRA A R A, et al. Trends in developments of certified reference materials for chemical analysis-focus on food, water, soil, and sediment matrices[J]. TrAC Trends in Analytical Chemistry, 2018, 100: 53-64. doi: 10.1016/j.trac.2017.12.013 [18] 郑子繁, 刘卫晓, 金芜军, 等. 质量平衡法及其在标准物质定值中的应用进展[J]. 生物技术进展, 2020, 10(6): 623-629. [19] 杨梦瑞, 简凌波, 王敏, 等. 盐酸沙拉沙星纯度定值方法研究及标准物质研制[J]. 农产品质量与安全, 2020(6): 35-44. [20] 张思遥, 李晓敏, 王海峰, 等. 差示扫描量热法测定4-正辛基酚, 炔雌醇等5种化合物的纯度 [J]. 计量科学与技术, 2022, (66)7: 22-27. [21] 韦棋, 苏福海. 甲卡西酮纯度标准物质的研制[J]. 计量科学与技术, 2020(11): 10-16. [22] 李硕, 张楠, 刘喆, 等. α-熊果苷纯度标准物质的研制[J]. 计量科学与技术, 2022, 66(8): 7-12. [23] GUO W B, HAN Z, YANG J H, et al. Simultaneous preparation and characterization of three high-purity type B fumonisins from maize culture[J]. Analytical Methods, 2016, 8: 2737. doi: 10.1039/C5AY03307A [24] 国家市场监督管理总局. 标准物质的定值及均匀性、 稳定性评估: JJF 1343-2022 [S]. 北京: 中国质检出版社, 2022. [25] Bezuidenhout S C, Gelderblom W C A, Gorst-Allman C P, et al. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme[J]. Journal of the Chemical Society, Chemical Communications, 1988(11): 743-745. doi: 10.1039/c39880000743 [26] 李莉, 李硕. QuEChERS-超高效液相色谱-串联质谱法测定玉米油中伏马毒素B1, B2, B3[J]. 食品安全质量检测学报, 2020, 11(19): 7006-7011. [27] HAN Z, REN Y, LIU X, et al. A reliable isotope dilution method for simultaneous determination of fumonisins B1, B2 and B3 in traditional Chinese medicines by ultra‐high‐performance liquid chromatography‐tandem mass spectrometry[J]. Journal of Separation Science, 2010, 33(17-18): 2723-2733. doi: 10.1002/jssc.201000423 [28] SZEKERES A, LORANTFY L, BENCSIK O, et al. Rapid purification method for fumonisin B1 using centrifugal partition chromatography[J]. Food Additives & Contaminants, 2013, 30(1): 147-155. [29] MARIA, MÅNSSON, MARIE, et al. Isolation and NMR Characterization of Fumonisin B2 and a New Fumonisin B6from Aspergillus niger[J]. Journal of Agricultural & Food Chemistry, 2010, 58: 949-953. [30] 马康, 苏福海, 王海峰, 等. 有机纯度标准物质定值技术研究进展[J]. 分析测试学报, 2013, 32(7): 901-908. [31] WESTWOOD S, TAICHIHUANG, TINGGARRIDO, et al. Development and validation of a suite of standards for the purity assignment of organic compounds by quantitative NMR spectroscopy[J]. Metrologia, 2019, 56: 064001. doi: 10.1088/1681-7575/ab45cb [32] 国家市场监督管理总局. 纯度标准物质定值计量技术规范 有机物纯度标准物质: JJF 1855-2020 [S]. 北京: 中国质检出版社, 2020.