Research on Calibration Method of Vector Hydrophone Sensitivity in Small Water Tank
-
摘要: 水听器的接收灵敏度是衡量其声学性能的重要指标。随着低频大尺度矢量水听器的出现,常规驻波管因尺寸的限制无法进行矢量水听器的校准工作;消声水池由于边界条件的限制,采用脉冲声技术无法在时域上将低频信号的直达波与反射波分离。针对这两种情况,研究了在小水箱中基于暂态信号的矢量水听器自由场灵敏度测量方法。以单谐振压电发射器在正弦脉冲信号激励下谐振频率点处的辐射面振动位移解析解为基础,对接收信号暂态部分与稳态部分幅值之间的关系进行了分析,同时利用有限元软件,以水声测试中常用的发射器为例,通过模态分析、谐响应分析以及瞬态分析,仿真分析了利用暂态信号进行矢量水听器灵敏度测试时,声源的选择和接收点的位置,并利用搭建的实验平台,在小水箱中利用比较法完成了对矢量水听器声压灵敏度的测量。该测量方法克服了空间尺寸的影响,扩展了有限空间内矢量水听器的测量频率下限。Abstract: The reception sensitivity of hydrophones is a crucial indicator of their acoustic performance. The advent of low-frequency, large-scale vector hydrophones presents new challenges: conventional standing wave tubes cannot calibrate these devices due to size constraints, and anechoic water tanks, with their boundary conditions, fail to separate direct and reflected waves of low-frequency signals using pulse sound technology. Addressing these issues, this paper investigates a method for free field sensitivity measurement of vector hydrophones using transient signals in small water tanks. Based on the analytical solution of surface vibration displacement of a single resonant piezoelectric transmitter under sinusoidal pulse signal excitation, the relationship between transient and steady-state signal amplitudes is analyzed. Finite element software is used for modal, harmonic response, and transient analysis, considering commonly used transmitters in hydroacoustic testing. This simulation studies the choice of sound source and receiver location for vector hydrophone sensitivity testing using transient signals. An experimental setup in a small water tank measures the hydrophone's acoustic pressure sensitivity using a comparison method. This approach overcomes spatial limitations and extends the lower frequency measurement limit for vector hydrophones in confined spaces.
-
Key words:
- metrology /
- small water tank /
- transient signals /
- standing wave field /
- receiving sensitivity /
- vector hydrophone
-
表 1 基于暂态信号的矢量水听器灵敏度测量结果
Table 1. Sensitivity measurement results of vector hydrophones based on transient signals
频率/Hz 每半个周期处作为参考值计算矢量水听器自由场灵敏度测量结果 1 2 3 4 5 6 7 3900 −178.69 −177.90 −178.01 −178.18 — — — 4000 −178.61 −177.57 −177.79 −178.15 — — — 4060 −178.44 −177.25 −177.66 −177.90 — — — 4100 −178.44 −177.36 −177.70 −177.82 — — — 4200 −178.26 −177.90 −177.36 −177.88 — — — 4300 −178.63 −177.76 −177.73 −177.56 −177.77 — — 4400 −178.47 −178.35 −177.32 −177.92 −177.58 — — 4500 −179.14 −178.31 −177.43 −177.83 −177.48 — — 4600 −179.43 −178.40 −177.54 −177.71 −177.26 — — 4700 −179.66 −178.48 −177.48 −177.45 −177.41 — — 4800 −179.22 −178.84 −177.10 −177.66 −177.15 — — 4900 −179.45 −178.45 −177.35 −177.20 −176.79 — — 5000 −179.12 −178.60 −177.07 −177.29 −176.50 — — 5100 −179.04 −178.47 −176.93 −177.22 −176.57 — — 5200 −178.93 −178.35 −176.62 −177.33 −176.28 — — 5300 −178.79 −178.16 −176.36 −177.31 −176.23 — — 5400 −178.93 −177.79 −176.39 −177.14 −176.41 −176.17 — 5500 −178.73 −177.66 −176.35 −177.07 −176.51 −176.09 — 5600 −178.68 −177.59 −176.30 −177.28 −176.21 −175.92 — 5700 −178.62 −177.60 −176.48 −177.1 −176.37 −175.86 — 5800 −178.53 −177.73 −176.56 −177.02 −176.42 −175.71 — 5900 −178.46 −177.84 −176.72 −176.92 −176.58 −175.88 — 6000 −178.48 −177.97 −176.87 −176.63 −176.60 −176.07 — 6100 −178.55 −178.11 −177.14 −176.59 −176.62 −176.31 — 6200 −178.67 −178.21 −177.34 −176.64 −176.34 −176.67 — 6300 −178.57 −178.37 −177.62 −176.5 −176.51 −176.48 −177.49 6400 −178.54 −178.57 −178.05 −179.40 −176.40 −176.58 −177.71 6500 −178.54 −178.63 −178.58 −176.21 −176.36 −176.81 −177.79 6600 −178.56 −178.89 −178.84 −176.39 −176.01 −177.41 −177.60 6700 −178.33 −179.22 −179.54 −177.12 −176.65 −178.46 −178.27 6800 −178.53 −179.19 −179.59 −176.70 −175.82 −178.12 −177.76 6900 −178.46 −179.37 −179.89 −177.21 −176.21 −178.20 −178.25 7000 −178.50 −179.49 −180.02 −178.40 −176.39 −178.70 −178.39 -
[1] 杜召平, 陈刚, 王达. 国外声呐技术发展综述[J]. 舰船科学技术, 2019, 41(1): 145-151. doi: 10.3404/j.issn.1672-7649.2019.01.029 [2] Maclean W R. Absolute measurement of sound without a primary standard[J]. J. Acous. Soc. Am, 1940, 12: 140-146. doi: 10.1121/1.1916085 [3] Cook R K. Absolute pressure calibration of microphones[J]. J. Acous. Soc. Am, 1941, 13: 415-420. [4] Horton C W, Jr GSI. The Computation of Far-Field Radiation Patterns from Measurements Made near the Source[J]. Journal of the Acoustical Society of America, 1961, 33(7): 126-129. [5] Baker D D. Determination of Far-Field Characteristics of Large Underwater Sound Transducers from Near-Field Measurements[J]. The Journal of the Acoustical Society of America, 1962, 34(11): 1737-1744. doi: 10.1121/1.1909112 [6] Trott W J. Transducer Calibration from Near‐Field Data[J]. Journal of the Acoustical Society of America, 1962, 34(12): 2-11. [7] Trott W J. Underwater-Sound‐Transducer Calibration from Nearfield Data[J]. Journal of the Acoustical Society of America, 1964, 36(8): 1557-1568. doi: 10.1121/1.1919243 [8] Trott W J, Groves I D. Application of the Near-Field Array Technique to Sonar Evaluation[J]. 1968, 34: 1-34. [9] Robinson A Z, Beatty L G. The Use of Broadband Signals for Underwater Acoustic Transducer Calibration[R]. NRL, 1975. [10] 朱厚卿. 脉冲频谱法水声换能器低频校准[J]. 声学学报, 1979(2): 143-145. doi: 10.15949/j.cnki.0371-0025.1979.02.010 [11] Trivett D H, Robinson A Z. Modified Prony method approach to echo‐reduction measurements[J]. Journal of the Acoustical Society of America, 1981, 70(4): 1166-1175. doi: 10.1121/1.386948 [12] 金晓峰, 袁文俊. 瞬态测量的Prony方法[J]. 声学与电子工程, 1993(1): 28-33. [13] 金晓峰, 袁文俊. 一种新的水声换能瞬态校准方案[J]. 声学学报, 1996(4): 306-312. doi: 10.15949/j.cnki.0371-0025.1996.04.003 [14] 张建兰, 高天赋, 曾娟, 等. 压电陶瓷发射换能器的瞬态抑制[J]. 声学学报, 2007(4): 295-303. doi: 10.3321/j.issn:0371-0025.2007.04.002 [15] Ainsleigh P L, George J D. Modeling exponential signals in a dispersive multipath environment[C]. Acoustics, Speech, and Signal Processing, IEEE International Conference on IEEE Computer Society, 1992. [16] Ainsleigh P L, George J D. Signal modeling in reverberant environments with application to underwater electroacoustic transducer calibration[J]. Journal of the Acoustical Society of America, 1995, 98(98): 270-279. [17] Isaev A E, Matveev A N. Two approaches to hydrophone free-field calibrationat continuous radiationinnonanechoic water tank[J]. Measurement Engineering, 2008, 12: 47-51. [18] 贾广慧, 陈毅, 费腾, 等. 一种基于CMWA技术的矢量水听器自由场宽带互易校准[C]. 2019中国西部声学学术交流会论文集, 2019. [19] 吴本玉, 莫喜平, 崔政. 非消声水池中低频换能器测量的空间域处理方法[J]. 声学学报, 2010, 35(4): 434-440. doi: 10.15949/j.cnki.0371-0025.2010.04.010 [20] 黄勇军. 在小水槽内实施水听器低频校准的一种技术[J]. 声学与电子工程, 2006(1): 14-16. [21] 李智. 低噪声矢量水听器设计及其校准方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. [22] 郭俊媛. 小尺寸矢量阵低频校准方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. [23] 郑士杰, 袁文俊, 缪荣兴. 水声计量测试技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 1995. [24] 陈洪娟, 费腾. 水声驻波声管在矢量水听器校准技术中的应用[J]. 宇航计测技术, 2022, 42(5): 1-7. doi: 10.12060/j.issn.1000-7202.2022.05.01 [25] 张虎, 陈洪娟, 张洪刚, 等. 数值计算法实现同振式矢量水听器驻波管中灵敏度修正[J]. 声学学报, 2023, 48(3): 532-540. doi: 10.15949/j.cnki.0371-0025.2023.03.003 [26] 吕琦, 王俊博, 张颖, 等. 低频标准振动台的可计量性设计研究[J]. 计量科学与技术, 2022, 66(4): 101-107,88. [27] 吕云飞, 师俊杰, 孙大军, 等. 水池中低频矢量水听器灵敏度校准[J]. 压电与声光, 2009, 31(6): 814-816. [28] 杨收. 甚低频矢量水听器绝对校准方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [29] 杜功焕, 朱哲民. 声学基础 [M]. 第2版. 南京: 南京大学出版社, 2001. [30] 范继祥. 矢量水听器校准装置研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.