留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单环螺线差分麦克风阵列结构及性能研究

陈卫松 黄志勋 王学研 牛锋

陈卫松,黄志勋,王学研,等. 单环螺线差分麦克风阵列结构及性能研究[J]. 计量科学与技术,2023, 67(11): 10-16 doi: 10.12338/j.issn.2096-9015.2023.0290
引用本文: 陈卫松,黄志勋,王学研,等. 单环螺线差分麦克风阵列结构及性能研究[J]. 计量科学与技术,2023, 67(11): 10-16 doi: 10.12338/j.issn.2096-9015.2023.0290
CHEN Weisong, HUANG Zhixun, WANG Xueyan, NIU Feng. The Structure and Performance Study of Single-Loop Spiral Differential Microphone Array[J]. Metrology Science and Technology, 2023, 67(11): 10-16. doi: 10.12338/j.issn.2096-9015.2023.0290
Citation: CHEN Weisong, HUANG Zhixun, WANG Xueyan, NIU Feng. The Structure and Performance Study of Single-Loop Spiral Differential Microphone Array[J]. Metrology Science and Technology, 2023, 67(11): 10-16. doi: 10.12338/j.issn.2096-9015.2023.0290

单环螺线差分麦克风阵列结构及性能研究

doi: 10.12338/j.issn.2096-9015.2023.0290
基金项目: 国家重点研发计划项目(2021YFF0600202);国家自然科学基金项目(62072005)。
详细信息
    作者简介:

    陈卫松(1973-),安徽师范大学副教授,研究方向:阵列信号处理,邮箱:weichen2711@163.com

    通讯作者:

    牛锋(1980-),中国计量科学研究院副研究员,研究方向:声学计量和测量,邮箱:niufeng@nim.ac.cn

  • 中图分类号: TB95

The Structure and Performance Study of Single-Loop Spiral Differential Microphone Array

  • 摘要: 基于雅可比展开法设计的圆环型差分麦克风阵列,可产生频率不变的空间响应和调向到任意方向的波束图,但受贝塞尔函数在某些特定频率取零值的影响,白噪声增益和指向性因子会出现零陷问题,导致麦克风阵列性能恶化。同心圆环麦克风阵列可以消除零陷问题,但需要的麦克风单元数量较多,且阵列分布面积也较大。设计一种基于阿基米德螺线结构的单环螺线差分麦克风阵列。对比分析了该阵列与圆环型差分阵列在白噪声增益、指向性因子和波束图方面的差异。讨论了螺线参数选取对其性能的影响。仿真结果表明,在同等条件下,单环螺线差分阵列克服了圆环型差分阵列的白噪声增益,和指向性因子在某些特定频率点出现的零陷问题,在不增加麦克风数量的情况下,表现出更优越的性能。随着麦克风数量的增加,阵列形成的波束性能得到进一步改善。
  • 图  1  单环螺线差分麦克风阵列

    Figure  1.  Single-loop spiral differential microphone array

    图  2  单环螺线差分阵列的一阶锐心型指向性图

    Figure  2.  First-order hypercardioid beamparttern of single-loop spiral differential microphone array

    图  3  单环螺线差分阵列的二阶锐心型指向性图

    Figure  3.  Second-order hypercardioid beamparttern of single-loop spiral differential microphone array

    图  4  一阶单环螺线差分阵列的WNG和DF随频率变化

    Figure  4.  WNG and DF variation with frequency for first-order single-loop spiral differential microphone array

    图  5  二阶单环螺线差分阵列WNG和DF随频率变化

    Figure  5.  WNG and DF variation with frequency for second-order single-loop spiral differential microphone array

    图  6  一阶单环螺线差分阵列WNG和DF随指向角变化

    Figure  6.  WNG and DF variation with directivity angle for first-order single-loop spiral differential microphone array

    图  7  二阶单环螺线差分阵列WNG和DF随指向角变化

    Figure  7.  WNG and DF variation with directivity angle for second-order single-loop spiral differential microphone array

    图  8  不同r0一阶单环螺线阵列WNG和DF随频率变化

    Figure  8.  WNG and DF variation with frequency for first-order single-loop spiral differential microphone array with different r0

    图  9  不同r0二阶单环螺线阵列WNG和DF随频率变化

    Figure  9.  WNG and DF variation with frequency for second-order single-loop spiral differential microphone array with different r0

  • [1] BENESTY J, CHEN J, HUANG Y. Microphone array signal processing[M]. Berlin: Springer, 2008: 39-66.
    [2] YAN S. Broadband array processing[M]. Singapore: Springer, 2019: 131-219.
    [3] 秦朝琪, 黄杰, 白滢, 等. 机动车行进中鸣笛声监测的校准方法研究[J]. 计量科学与技术, 2021, 65(8): 42-45.
    [4] 刘焜, 牛锋, 黄杰. 机动车非现场执法用监控设备计量技术法规综述[J]. 计量科学与技术, 2022, 66(7): 50-53.
    [5] 陈左龙, 陈华伟. 传声器失配误差对差分传声器圆阵主瓣指向的影响特性[J]. 声学学报, 2022, 47(5): 541-556.
    [6] 郑毅豪, 巩朋成, 杜帮华, 等. 圆形差分麦克风阵列的二阶波束形成器设计[J]. 湖北工业大学学报, 2020, 35(2): 42-47.
    [7] YAN L, HUANG W, KLEIJN W B, et al. Phase error analysis for first-order linear differential microphone arrays[C]. International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2022: 1-5.
    [8] JIN J, BENESTY J, HUANG G, et al. On differential beamforming with nonuniform linear microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 1840-1852. doi: 10.1109/TASLP.2022.3178229
    [9] HUANG W, FENG J. Robust steerable differential beamformer for concentric circular array with directional microphones[C]. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2022: 319-323.
    [10] BORRA F, BERNARDINI A, BERTULETTI I, et al. Arrays of first-order steerable differential microphones[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 751-755.
    [11] 黄公平. 面向语音通信与交互的麦克风阵列语音增强方法研究[D]. 西安: 西北工业大学, 2022.
    [12] BENESTY J, CHEN J. Study and design of differential microphone arrays[M]. Berlin: Springer, 2012: 33-179.
    [13] BENESTY J, CHEN J, COHEN I. Design of circular differential microphone arrays[M]. Berlin: Springer, 2015: 33-163.
    [14] LENG X, CHEN J, BENESTY J. A new method to design steerable first-order differential beamformers[J]. IEEE Signal Processing Letters, 2021, 28: 563-567. doi: 10.1109/LSP.2021.3059533
    [15] BENESTY J, COHEN I, CHEN J. Array beamforming with linear difference equations[M]. Cham: Springer, 2021: 23-127.
    [16] 潘超, 黄公平, 陈景东. 面向语音通信与交互的麦克风阵列波束形成方法[J]. 信号处理, 2020, 36(6): 804-815.
    [17] 张敏, 潘翔. 基于差分麦克风阵列的恒定束宽波束形成研究[J]. 杭州电子科技大学学报(自然科学版), 2020, 40(4): 20-24.
    [18] HUANG G, COHEN I, CHEN J, et al. Continuously steerable differential beamformers with null constraints for circular microphone arrays[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1248-1258. doi: 10.1121/10.0001770
    [19] ZHAO L, BENESTY J, CHEN J. Design of robust differential microphone arrays with the Jacobi–Anger expansion[J]. Applied Acoustics, 2016, 110: 194-206. doi: 10.1016/j.apacoust.2016.03.015
    [20] HUANG G, BENESTY J, CHEN J. On the design of frequency-invariant beampatterns with uniform circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(5): 1140-1153. doi: 10.1109/TASLP.2017.2689681
    [21] WANG Y, YANG Y, HE Z, et al. Robust superdirective frequency-invariant beamforming for circular sensor arrays[J]. IEEE Signal Processing Letters, 2017, 24(8): 1193-1197. doi: 10.1109/LSP.2017.2712151
    [22] WANG J, YANG F, YANG J. Insights into the MMSE-based frequency-invariant beamformers for uniform circular arrays[J]. IEEE Signal Processing Letters, 2022, 29: 2432-2436. doi: 10.1109/LSP.2022.3224687
    [23] WANG J, YANG F, YANG J. A perspective on fully steerable differential beamformers for circular arrays[J]. IEEE Signal Processing Letters, 2023, 30: 648-652. doi: 10.1109/LSP.2023.3280852
    [24] HUANG G, BENESTY J, CHEN J. Design of robust concentric circular differential microphone arrays[J]. The Journal of the Acoustical Society of America, 2017, 141(5): 3236-3249. doi: 10.1121/1.4983122
    [25] HUANG G, CHEN J, BENESTY J. On the design of robust steerable frequency-invariant beampatterns with concentric circular microphone arrays[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 506-510.
    [26] HUANG G, CHEN J, BENESTY J. Insights into frequency-invariant beamforming with concentric circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(12): 2305-2318. doi: 10.1109/TASLP.2018.2862826
    [27] ZHAO X, HUANG G, CHEN J, et al. An improved solution to the frequency-invariant beamforming with concentric circular microphone arrays[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 556-560.
    [28] BERNARDINI A, D’ARIA M, SANNINO R, et al. Efficient continuous beam steering for planar arrays of differential microphones[J]. IEEE Signal Processing Letters, 2017, 24(6): 794-798. doi: 10.1109/LSP.2017.2695082
    [29] BORRA F, BERNARDINI A, ANTONACCI F, et al. Efficient implementations of first-order steerable differential microphone arrays with arbitrary planar geometry[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1755-1766. doi: 10.1109/TASLP.2020.2998283
    [30] HUANG G, CHEN J, BENESTY J, et al. Steerable differential beamformers with planar microphone arrays[J]. EURASIP Journal on Audio, Speech, and Music Processing, 2020, 2020: 1-18. doi: 10.1186/s13636-019-0169-5
    [31] 同济大学数学系. 高等数学(上册)[M]. 第7版. 北京: 高等教育出版社, 2014: 371-372.
  • 加载中
图(9)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  153
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-18
  • 录用日期:  2023-12-08
  • 修回日期:  2023-12-12
  • 网络出版日期:  2023-12-20

目录

    /

    返回文章
    返回