Study on Hydrophone Calibration Using the Transfer Coupler Reciprocity Method
-
摘要: 针对传统耦合腔互易法校准水听器灵敏度时,水听器尺寸、材料受到限制,耦合腔体积参数在校准不同水听器时需要每次测定等问题,进一步提升耦合腔互易法校准的准确度。开展了转移耦合腔互易法校准技术研究,详细介绍并推导了转移耦合腔互易法校准水听器灵敏度的原理,设计并研制了参考耦合腔和转移耦合腔。其中,转移耦合腔包括三换能器转移耦合腔和四换能器转移耦合腔。在此基础上,基于转移耦合腔互易法校准原理构建了转移耦合腔互易法校准标准装置。在20 Hz~2 kHz频率范围,分别采用三换能器转移耦合腔和四换能器转移耦合腔开展了标准水听器校准实验研究,对比了两个转移耦合腔校准的结果,具有很好的一致性,并对校准结果的测量不确定度进行了评估。为验证校准结果的准确性,与低频水声声压基准的校准结果进行了比较。结果表明,校准结果偏差绝对值最大为0.5 dB,小于比对装置总的不确定度,因此转移耦合腔互易法校准结果是准确的,测量不确定度达到0.4 dB(k=2)。通过采用参考耦合腔和转移耦合腔相结合的方式,解决了传统耦合腔互易法校准中存在的问题,进一步提升了校准的准确度,为更高等级低频水声标准的研制奠定了基础。Abstract: This paper addresses the limitations of traditional coupler reciprocity methods in calibrating hydrophones, such as size constraints and material restrictions, aiming to enhance calibration accuracy. A transfer coupler reciprocity method is proposed for hydrophone sensitivity calibration, addressing issues like varying coupler volume parameters for different hydrophones. The principles of this method are detailed, and both reference and transfer couplers, including three-transducer and four-transducer types, are developed. Calibration standards based on this method are established, and calibration experiments for standard hydrophones in the 20 Hz to 2 kHz frequency range are conducted using both types of transfer couplers. The results from these two couplers are compared, showing good consistency, and measurement uncertainties are evaluated. To verify the calibration accuracy, results are compared with those from a low-frequency underwater sound primary standard. The deviations are found to be within 0.5 dB, less than the total uncertainty of the comparison devices, validating the accuracy and achieving a measurement uncertainty of 0.4 dB (k=2). By integrating reference and transfer couplers, traditional challenges in coupler reciprocity calibration are overcome, improving accuracy and laying the foundation for higher-level low-frequency underwater acoustic standards.
-
表 1 RHC14水听器转移耦合腔互易法灵敏度校准结果
Table 1. Results of RHC14 hydrophone sensitivity calibration using transfer coupler reciprocity method
f/Hz M1/dB M2/dB (M2−M1 )/dB 20 −201.3 −201.3 0 25 −201.4 −201.3 0.1 31.5 −201.6 −201.4 0.2 40 −201.5 −201.3 0.2 63 −201.8 −201.4 0.4 80 −201.7 −201.5 0.2 100 −201.7 −201.4 0.3 125 −201.5 −201.6 −0.1 160 −201.8 −201.4 0.4 200 −201.8 −201.5 0.3 250 −201.7 −201.3 0.4 315 −201.8 −201.3 0.5 400 −201.7 −201.3 0.4 500 −201.6 −201.3 0.3 630 −201.5 −201.2 0.3 800 −201.6 −201.2 0.4 1000 −201.2 −201.1 0.1 1250 −200.9 −201.1 −0.2 1600 −201.2 −201.1 0.1 2000 −201.3 −201.2 0.1 表 2 RHC14水听器灵敏度校准重复性结果
Table 2. Repeatability results of RHC14 hydrophone sensitivity calibration
f/Hz M1/dB M2/dB M3/dB M4/dB M5/dB M6/dB Sn/dB uA/dB uA/% 20 −201.3 −201.3 −201.1 −201.4 −201.3 −201.4 0.11 0.04 0.52 25 −201.4 −201.1 −201.3 −201.4 −201.4 −201.2 0.13 0.05 0.60 31.5 −201.6 −201.4 −201.3 −201.6 −201.4 −201.4 0.12 0.05 0.58 40 −201.5 −201.5 −201.5 −201.3 −201.3 −201.3 0.11 0.04 0.52 63 −201.8 −201.6 −201.6 −201.6 −201.8 −201.9 0.13 0.05 0.63 80 −201.7 −201.6 −201.4 −201.5 −201.4 −201.6 0.12 0.05 0.57 100 −201.8 −201.7 −201.7 −201.5 −201.8 −201.7 0.11 0.04 0.52 125 −201.7 −201.4 −201.7 −201.6 −201.7 −201.6 0.12 0.05 0.55 160 −201.6 −201.5 −201.3 −201.6 −201.5 −201.4 0.12 0.05 0.55 200 −201.5 −201.5 −201.2 −201.3 −201.4 −201.5 0.13 0.05 0.60 250 −201.4 −201.1 −201.4 −201.2 −201.2 −201.4 0.13 0.05 0.63 315 −201.6 −201.4 −201.6 −201.3 −201.6 −201.5 0.13 0.05 0.60 400 −201.9 −201.8 −201.6 −201.7 −201.7 −201.6 0.12 0.05 0.55 500 −201.7 −201.7 −201.5 −201.5 −201.6 −201.6 0.09 0.04 0.42 630 −201.5 −201.6 −201.5 −201.4 −201.7 −201.7 0.12 0.05 0.57 800 −201.6 −201.4 −201.4 −201.7 −201.4 −201.4 0.13 0.05 0.63 1000 −201.2 −201.2 −201.5 −201.3 −201.4 −201.2 0.13 0.05 0.60 1250 −200.9 −201.0 −201.1 −200.9 −200.9 −201.0 0.08 0.03 0.38 1600 −201.2 −201.4 −201.5 −201.2 −201.2 −201.4 0.13 0.05 0.63 2000 −201.3 −201.3 −201.4 −201.4 −201.1 −201.3 0.11 0.04 0.52 表 3 三换能器转移耦合腔灵敏度结果比对
Table 3. Comparison of sensitivities using three-transducer transfer coupler
f/Hz M1/dB M0/dB (M1−M0)/ dB 20 −201.3 −201.5 0.2 25 −201.4 −201.5 0.1 31.5 −201.6 −201.2 −0.4 40 −201.5 −201.4 −0.1 63 −201.8 −201.3 −0.5 80 −201.7 −201.5 −0.2 100 −201.7 −201.5 −0.2 125 −201.5 −201.4 −0.1 160 −201.8 −201.6 −0.2 200 −201.8 −201.6 0.3 250 −201.7 −201.5 −0.2 315 −201.8 −201.5 −0.3 400 −201.7 −201.3 −0.4 500 −201.6 −201.5 −0.1 630 −201.5 −201.4 −0.1 800 −201.6 −201.2 −0.4 1000 −201.2 −201.4 0.2 1250 −200.9 −201.4 0.5 1600 −201.2 −201.3 0.1 2000 −201.3 −201.2 −0.1 表 4 四换能器转移耦合腔灵敏度结果比对
Table 4. Comparison of sensitivities using four-transducer transfer coupler
f/Hz M2/dB M0/dB (M2−M0)/dB 20 −201.3 −201.5 0.2 25 −201.3 −201.5 0.2 31.5 −201.4 −201.2 −0.2 40 −201.3 −201.4 0.1 63 −201.4 −201.3 −0.1 80 −201.5 −201.5 0 100 −201.4 −201.5 0.1 125 −201.6 −201.4 −0.2 160 −201.4 −201.6 0.2 200 −201.5 −201.6 0.1 250 −201.3 −201.5 0.2 315 −201.3 −201.5 0.2 400 −201.3 −201.3 0 500 −201.3 −201.5 0.2 630 −201.2 −201.4 0.2 800 −201.2 −201.2 0 1000 −201.1 −201.4 0.3 1250 −201.1 −201.4 0.3 1600 −201.1 −201.3 0.2 2000 −201.2 −201.2 0 -
[1] Bobber R J. Underwater Electroacoustic Measurements[J]. Naval Research Laboratory, 1970, 7: 1. [2] 郑士杰, 袁文俊, 缪荣兴. 水声计量测试技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 1995: 66-70. [3] 陈毅, 赵涵, 袁文俊. 水下电声参数测量[M]. 北京: 兵器工业出版社, 2017: 96-99. [4] 薛耀泉. 高静水压低频水声声压标准装置[C]. 中国计量测试学会, 1998. [5] 刘晋昌, 王双记, 于洪涛. 低频水声声压校准测试系统的设计[J]. 中国测试技术, 2007, 3(6): 4. [6] 陈毅, 王月兵, 费腾, 等. 中俄在250 Hz~200 kHz频段的水声声压比对校准[J]. 计量学报, 2012, 33(1): 47-51. [7] 陈洪娟, 费腾. 水声驻波声管在矢量水听器校准技术中的应用[J]. 宇航计测技术, 2022, 42(5): 1-7. [8] 张峰山. 水声探测技术的现状及发展研究[J]. 进展:科学视界, 2023(1): 76-78. [9] 黄海宁, 李宇. 水声目标探测技术研究现状与展望[J]. 中国科学院院刊, 2019, 34(3): 264-271. [10] 童峰, 周跃海, 陈东升, 等. 一种海洋环境监测水声网络路由方法: CN202210058878.5[P]. 2022-06-03. [11] 谢志敏, 徐全军, 李晟昊, 等. 采用被动声监测方法识别波弗特海区域海洋水声环境[J]. 应用声学, 2023, 42(4): 792-803. [12] 李志超. 基于嵌套双锥阵的水下低噪声目标辐射噪声测量方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021. [13] 杨娟, 惠俊英, 江磊. 利用低频声压干涉谱的目标运动参数估计[J]. 哈尔滨工业大学学报, 2008, 40(3): 4. [14] 国家技术监督局. 声学标准水听器: GB/T 4128-1995[S]. 北京: 中国标准出版社, 1995. [15] IEC. Underwater acoustics - Hydrophones - Calibration of hydrophones - Part 2: Procedures for low frequency: IEC 60565-2: 2019[S]. Geneva, 2019. [16] IEC. Underwater acoustics-Hydrophones-Calibration of hydrophones-Part 1: Procedures for free-field calibration of hydrophones : IEC 60565-1: 2020[S]. Geneva, 2020. [17] 孙俊东, 李琪, 尚大晶, 等. 混响场中水声换能器互易校准研究[C]. 2016中国西部声学学术交流会论文集, 2016. [18] 孙俊东. 混响场中水声换能器互易校准研究[D]. 哈尔滨: 哈尔滨工程大学, 2023. [19] 纪京召, 黄勇军. 水声换能器灵敏度混响法校准技术研究[J]. 声学与电子工程, 2019(1): 3. [20] 程果, 徐荣武, 何琳, 等. 混响声场条件下水声互易传递函数的测量及应用[J]. 声学学报, 2014, 39(5): 577-581. [21] 陈毅, 袁文俊. 甚低频水听器的静水压激励校准方法[J]. 声学与电子工程, 2003(1): 4. [22] Slater W , Crocker S , Baker S . A primary method for the complex calibration of a hydrophone from 1 Hz to 2 kHz[J]. Metrologia, 2018, 55(1): 84-94. [23] Alper B, Ata C C. Development and evaluation of primary calibration methods in underwater acoustics in a frequency range from 1 Hz to 100 Hz[J]. J. Acoust. Soc. Am, 2023, A244: 153. [24] 国家质量监督检验检疫总局. 高静水压下20Hz~3.15kHz标准水听器(耦合腔互易法)检定规程: JJG 1056-2010 [S]. 北京: 中国标准出版社, 2010. [25] 陈毅, 黄勇军, 费腾. 10 MPa静水压下20 Hz~200 kHz标准水听器校准[J]. 高压物理学报, 2013, 27(3): 7. [26] Zalesak, Joseph F. Transfer coupler reciprocity method for the absolute low-frequency calibration of field hydrophones under full environmental conditions[J]. Journal of the Acoustical Society of America, 1995, 11: 1. [27] Zalesak, Joseph F. Transfer coupler reciprocity: A new low-frequency coupler-reciprocity technique for the absolute calibration of field hydrophones under full environmental conditions[J]. Journal of the Acoustical Society of America, 1999, 105(4): 2342-2349. doi: 10.1121/1.426840 [28] Zalesak J F. Considerations for a new high-accuracy transfer-coupler reciprocity system for absolute electro-acoustic calibration[J]. Metrologia, 1999, 36(4): 305-311. doi: 10.1088/0026-1394/36/4/9 [29] 何涛, 王少博, 王世全. 一种声压灵敏度校准腔及其测试方法: 201811068108[P]. 2020-12-22. [30] 国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1—2012[S]. 北京: 中国标准出版社, 2012.