A Study of the Effect of Positional Offset on the Calibration Results of the Free-Field Comparison Method
-
摘要: 参考传声器和待测传声器定位而引起的偏差被认为是引起自由场比较法测量不确定度的重要组成部分。为了评估位置偏移对灵敏度和频率响应校准结果的影响情况,在250 Hz到20 kHz频率范围,通过控制校准过程中参考与待测传声器位置的水平和轴向偏差,将灵敏度级的校准结果与位移偏差进行最小二乘法拟合,定量分析每个频率下灵敏度级受定位水平、轴向偏移的影响结果,给出相应拟合曲线。并对拟合结果进行统计检验,根据拟合曲线的斜率和检验得到的显著性水平表明:频率增加,灵敏度级的校准结果受水平偏移的影响显著提升,在20 kHz处达到最大斜率0.016 dB/mm;不同频率点处灵敏度级对轴向偏差的影响效果不同,部分频率对轴向偏差不敏感。Abstract: Positional offsets of the reference microphone (REF) and the microphone to be tested (DUT) are considered to be an important component causing measurement uncertainty in the free-field comparison method. To assess the effect of positional offset on the sensitivity and frequency response calibration results, this paper quantitatively analyzes the effect of positional offset on the sensitivity level at each frequency by controlling the horizontal and axial offsets of the REF and DUT during the calibration process. A least-squares fit of the calibration results of the sensitivity level to the displacement offset is performed in the frequency range of 250 Hz to 20 kHz, and corresponding fit curves are provided. Statistical tests were also carried out on the fitting results. According to the slopes of the fitted curves and the significance levels obtained from the tests, it is shown that with increasing frequency, the influence of horizontal offset on the calibration results of the sensitivity level increases significantly, reaching a maximum slope of 0.016 dB/mm at 20 kHz. The effects of axial deviation on the sensitivity level vary at different frequency points, with some frequencies being insensitive to axial offset.
-
Key words:
- metrology /
- microphones /
- free-field comparison method /
- sensitivity /
- frequency response
-
表 1 水平方向偏移分析结果表
Table 1. Results table for horizontal offset analysis
频率(Hz) A1i(dB/mm) B1i(dB) 概率P>F R12 250 −0.001 −25.72 0.000 0.007 315 −0.009 −25.66 0.713 0.293 400 0.002 −25.77 0.011 0.070 500 −0.003 −25.70 0.248 0.111 630 −0.003 −25.68 0.139 0.062 800 0.001 −25.77 0.275 0.006 1000 −0.001 −25.70 0.730 0.008 1250 0.000 −25.68 0.692 0.001 1600 −0.004 −25.63 0.898 0.116 2000 0.010 −25.73 0.131 0.298 2500 0.004 −25.65 0.011 0.082 3150 −0.001 −25.49 0.209 0.013 4000 −0.002 −25.50 0.622 0.032 5000 0.005 −25.53 0.435 0.177 6300 0.010 −25.62 0.057 0.263 8000 −0.002 −25.61 0.017 0.085 10000 −0.008 −25.55 0.200 0.579 12500 −0.014 −25.47 0.000 0.814 16000 −0.007 −24.88 0.000 0.713 20000 −0.016 −25.71 0.000 0.818 表 2 轴向方向偏移分析结果表
Table 2. Results table for axial offset analysis
频率(Hz) A2i(dB/mm) B2i(dB) 概率P>F R2i2 250 0.012 −25.71 0.000 0.60 315 0.017 −25.73 0.000 0.57 400 0.008 −25.77 0.004 0.37 500 0.013 −25.71 0.000 0.48 630 0.005 −25.71 0.208 0.08 800 0.010 −25.69 0.001 0.44 1000 0.003 −25.68 0.266 0.06 1250 −0.006 −25.71 0.061 0.17 1600 0.008 −25.67 0.008 0.32 2000 0.020 −25.58 0.000 0.49 2500 0.008 −25.63 0.023 0.24 3150 0.018 −25.45 0.000 0.53 4000 0.007 −25.55 0.033 0.22 5000 0.029 −25.48 0.000 0.73 6300 0.016 −25.47 0.001 0.42 8000 −0.007 −25.60 0.003 0.38 10000 0.028 −25.59 0.000 0.76 12500 0.004 −25.78 0.364 0.04 16000 0.015 −24.95 0.000 0.53 20000 0.020 −25.83 0.000 0.58 -
[1] 许肖梅. 声学基础[M]. 北京: 科学出版社, 2003. [2] 马大猷, 沈㠙. 声学手册[M]. 北京: 科学技术出版社, 2007. [3] 霍静茹, 宋文豪. 基于传声器阵列的声源定位[J]. 信息技术, 2016(6): 136-138. [4] Frede Skode, Electronic Engineer, A/S Brüel & Kjær. Windscreening of Outdoor Microphones[R]. Denmark, Technical Review, 1966-1. [5] 梁宁远, 陈宝, 韩松辰, 等. 高速直升机舱内噪声主动控制技术研究[J]. 航空科学技术, 2023, 34(9): 41-51. [6] 国家质量监督检验检疫总局. 工作标准传声器(静电激励器法)检定规程: JJG 175-2015[S]. 北京: 中国质检出版社 2015. [7] 国家质量监督检验检疫总局. 工作标准传声器(耦合腔比较法)检定规程: JJG 1019-2007[S]. 北京: 中国计量出版社 2007. [8] 国家市场监督管理总局. 工作标准传声器(自由场比较法)检定规程: JJG 1172-2019[S]. 北京: 中国计量出版社, 2019. [9] 陈虎, 温志锋, 吴宗汉. 驻极体电容传声器等效模型与相关参数影响的讨论[J]. 电声技术, 2008, 32(12): 36-42. doi: 10.3969/j.issn.1002-8684.2008.12.008 [10] 肖建红. 传声器灵敏度应用[J]. 电子质量, 1999(5): 43-44. [11] 李昱瑛. 不同传声器拾取男女语声的频率响应对比分析[J]. 电声技术, 2011, 35(7): 22-26. doi: 10.3969/j.issn.1002-8684.2011.07.005 [12] KWON, H. -S. , CHO, W. -H. , SUH, S. -J. Time-selective windowing technique in free-field microphone reciprocity calibration[J]. The Journal of the Acoustical Society of America, 2013, 134(1 Pt. 1): 237-245. [13] 何龙标, 王炳惺, 吴云, 等. LS2F传声器的高频自由场互易校准[J]. 计量学报, 2012, 33(5): 432-436. doi: 10.3969/j.issn.1000-1158.2012.05.11 [14] 陈增炳. 有源高功率微波器件频率与功率测试[J]. 计测, 1993, 019(3): 32-35. [15] 马晓洁, 曾吾. 电容式传声器自由场互易校准数据处理系统设计[J]. 计测技术, 2011, 31(1): 18-21. doi: 10.3969/j.issn.1674-5795.2011.01.006 [16] 中华人民共和国国家质量监督检验检疫总局. 测量传声器 第4部分: 工作标准传声器规范: GB/T 20441.4-2006[S]. 北京: 中国质检出版社, 2006. [17] 中华人民共和国国家质量监督检验检疫总局. 电声学 测量传声器 第5部分: 工作标准传声器声压校准的比较法: GB/T 20441.5-2017[S]. 北京: 中国质检出版社, 2017. [18] Bjor Oh. Technical note: Measurement of microphone freefield response[J]. Noise Control Engineering Journal, 2004, 52(2): 72-77. doi: 10.3397/1.2839743 [19] Salvador Barrera-Figueroa, Antoni Torras-Rosell, Knud Rasmussen, et al. A practical implementation of microphone free-field comparison calibration according to the standard IEC 61094-8[C]. US: 41st International congress and exposition on noise control engineering, 2012. [20] 俞靖, 杨春亭, 王学礼. 确定声源频率和位置的超分辨阵列处理方法[J]. 声学学报, 1999(1): 45-52. doi: 10.15949/j.cnki.0371-0025.1999.01.006 [21] 唐卫明, 楼益栋, 刘晖, 等. GPS连续运行参考站系统定位精度检测方法研究[J]. 通信学报, 2006, 27(8): 73-77. doi: 10.3321/j.issn:1000-436X.2006.08.014 [22] GARG, N. , SURENDRAN, P. , DHANYA, M. P. , et al. Measurement Uncertainty in Microphone Free-Field Comparison Calibrations[J]. Journal of Metrology Society of India, 2019, 34(3): 357-369. [23] VALENTIN BUZDUGA. Using the Concept of Constant Divergence of the Sound Pressure Level for Determining the Free-Field Sensitivity of Microphones by Comparison[C]. UK: International 2013 Wind Turbine Noise Conference, 2013. [24] 桑帅军, 何龙标, 裘剑敏, 等. 电容传声器声中心的测量及其对互易校准的影响[J]. 中国测试, 2017, 43(4): 15-18. doi: 10.11857/j.issn.1674-5124.2017.04.004 [25] 邓峥, 杨易宁, 陈文王, 等. 激光定位设备在大尺寸自由声场进行传声器比较法校准的应用[J]. 南京大学学报(自然科学), 2021, 57(5): 870-874. [26] HIRONOBU TAKAHASHI, WAKAKO YONESHIMA, RYUZO HORIUCHI. Discussion on consistency of free-field sensitivities among LS1P and LS2aP microphones[C]. Japan: Institute of Noise Control Engineering, 2011. [27] ZEMAR M. DEFILIPPO SOARES. Microphone calibration by comparison in simulated free field[C]. Turkey: 36th International congress and exhibition on noise control engineering, 2007. [28] IEC. Measurement Microphones Part 5: Methods for Pressure Calibration of Working Standard Microphones by Comparison IEC 61094-5: 2001[S]. European, 2001. [29] IEC. Measurement microphones Part 6: Electrostatic actuators for determination of frequency response IEC 61094-6: 2004[S]. European, 2004. [30] 邹乐强. 最小二乘法原理及其简单应用[J]. 科技信息, 2010, 2(23): 1114-1115. doi: 10.3969/j.issn.1001-9960.2010.23.875 [31] 郑云山, 牛锋, 钟波. 平方反比规律校准消声室和数据处理[J]. 计量科学与技术, 2022, 66(7): 54-57.