留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传声器风罩防风性能测试影响因素研究

秦朝琪 牛锋

秦朝琪,牛锋. 传声器风罩防风性能测试影响因素研究[J]. 计量科学与技术,2023, 67(12): 47-50, 12 doi: 10.12338/j.issn.2096-9015.2023.0309
引用本文: 秦朝琪,牛锋. 传声器风罩防风性能测试影响因素研究[J]. 计量科学与技术,2023, 67(12): 47-50, 12 doi: 10.12338/j.issn.2096-9015.2023.0309
QIN Zhaoqi, NIU Feng. Investigation into the Factors Affecting Windproof Performance Testing of Microphone Windscreens[J]. Metrology Science and Technology, 2023, 67(12): 47-50, 12. doi: 10.12338/j.issn.2096-9015.2023.0309
Citation: QIN Zhaoqi, NIU Feng. Investigation into the Factors Affecting Windproof Performance Testing of Microphone Windscreens[J]. Metrology Science and Technology, 2023, 67(12): 47-50, 12. doi: 10.12338/j.issn.2096-9015.2023.0309

传声器风罩防风性能测试影响因素研究

doi: 10.12338/j.issn.2096-9015.2023.0309
基金项目: 中国计量科学研究院探索基金(AKYCX2213)。
详细信息
    作者简介:

    秦朝琪(1992-),中国计量科学研究院工程师,研究方向:声学计量,邮箱:qinzhaoqi@nim.ac.cn

    通讯作者:

    牛锋(1980-),中国计量科学研究院副研究员,研究方向:声学计量,邮箱: niufeng@nim.ac.cn

  • 中图分类号: TB95

Investigation into the Factors Affecting Windproof Performance Testing of Microphone Windscreens

  • 摘要: 传声器风罩作为声探测系统中的重要组成部分,其主要功能是使测试结果免受外界风噪声的干扰,确保在户外测量时能够获得准确、可靠的数据,传声器风罩防风性能的好坏会直接影响测试结果,因此,研究风罩防风性能的测试方法及影响测试结果的因素具有重要意义。用相同风速下,传声器佩戴风罩前后的1/3倍频程差来表征风罩的防风性能,采用在声学风洞中测试的方法研究测点位置及背景噪声对风罩防风性能测量的影响。研究结果表明,由于流场边缘湍流度的增加,在风口试验段边缘的测试结果比试验段中心区域的测试结果高2.0~32.8 dB,因此,在选择测点位置时,应避免将风口边缘的位置作为测试位置;此外,通过在风洞中布置声源改变风洞的背景噪声,对比测试结果发现,在背景噪声频带声压级满足低于频带测量值至少7 dB时,背景噪声不影响测试结果,因此,在衡量背景噪声是否满足风罩防风性能的测试要求时,应用1/3倍频带声压级来衡量且满足频带测量值大于背景噪声至少7 dB的要求。
  • 图  1  风洞开口试验段

    Figure  1.  Test section of the wind tunnel

    图  2  试验用风罩

    Figure  2.  Test windscreen model

    图  3  试验装置原理图

    Figure  3.  Schematic of the testing device

    图  4  测点位置试验现场图

    Figure  4.  Layout of test point positions during experiment

    图  5  背景噪声试验现场图

    Figure  5.  Experimental setup for background noise testing

    图  6  测点位置的试验结果

    Figure  6.  Results from varying test point positions

    表  1  补偿前背景噪声测试结果

    Table  1.   Results of background noise before compensation

    频率/Hz 背景噪声/dB 有风罩/dB 无风罩/dB 防风性能/dB
    200 33.0 54.9 64.6 9.7
    250 32.6 62.0 65.6 3.6
    315 25.7 53.7 63.2 9.5
    400 22.8 49.1 61.3 12.2
    500 22.3 47.7 59.3 11.6
    630 21.3 46.4 57.5 11.1
    800 22.1 44.9 56.0 11.1
    1000 22.4 42.8 54.6 11.8
    1250 23.1 41.1 53.3 12.2
    1600 23.9 40.3 52.4 12.1
    2000 24.7 39.4 51.4 12.0
    2500 25.6 38.5 50.4 11.9
    3150 26.6 37.4 49.0 11.6
    4000 27.5 35.9 49.2 13.4
    下载: 导出CSV

    表  2  补偿背景噪声后测试结果

    Table  2.   Results of background noise post-compensation

    频率/Hz 补偿后背景噪声/dB 有风罩/dB 无风罩/dB 防风性能/dB
    200 40.4 54.5 64.6 10.1
    250 37.7 61.6 65.6 4.0
    315 36.2 53.7 63.0 9.3
    400 37.4 49.6 61.3 11.8
    500 39.0 48.1 59.4 11.3
    630 40.3 47.2 57.6 10.4
    800 42.8 46.9 56.3 9.4
    1000 45.6 47.5 55.2 7.8
    1250 45.5 46.9 54.1 7.3
    1600 45.1 46.5 53.3 6.8
    2000 44.9 46.1 52.4 6.3
    2500 43.9 45.1 51.4 6.3
    3150 44.9 45.6 50.6 5.0
    4000 49.3 49.8 52.6 2.9
    下载: 导出CSV
  • [1] Van den Berg G P. Wind-induced noise in a screened microphone[J]. The Journal of the Acoustical Society of America, 2006, 119(2): 824, 833.
    [2] Ledercq D, Cooper J, Stead M. The use of microphone windshields for outdoor noise measurementslC]. Proceedings of Acoustics 2008. Acoustics, 2008.
    [3] Xu Y, Zheng Z C, Wilson D K. A computational study of the effect of windscreen shape and flow resistivity on turbulent wind noise reduction[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1740-1747. doi: 10.1121/1.3552886
    [4] 环境保护部. 环境噪声监测技术规范 城市声环境常规监测: HJ 640-2012 [S]. 北京: 中国环境科学出版社, 2012.
    [5] 国家计划委员会. 工业企业噪声测量规范: GBJ 122-1988 [S]. 北京: 中国计划出版社, 1988.
    [6] Zheng Z C, Tan B K. Reynolds number effects on flow acoustic mechanisms in spherical windscreens[J]. Journal of the Acoustical Society of America, 2003, 113(1): 161-166. doi: 10.1121/1.1527927
    [7] 赖小强. 传声器风噪声抑制方法及实现技术研究[D]. 北京: 中国科学院大学, 2013.
    [8] FISOL U, RIPIN Z M, ISMAIL N A, et al. Wind noise analysis of a two-way radio[C]. IEEE International Conference on Smart Instrumentation, 2014.
    [9] NEMER E, LEBLANC W. Single-microphone wind noise reduction by adaptive postfiltering [C]. IEEE Workshop on Applications of Signal Processing to Audio & Acoustics, 2009.
    [10] 郭琴, 邱小军. 传声器风噪声和防风罩降噪性能仿真研究[C]. 北京: 全国声学学术会议, 2016.
    [11] 侍艳华, 周瑜, 冯晖, 等. 一种用于传声器自噪声抑制的风锥结构设计[J]. 电声技术, 2015, 12(39): 17-19. doi: 10.16311/j.audioe.2015.12.04
    [12] 尚伟, 陈宝康, 朱小辉, 等. 次级防风罩在风电机组噪声测试中的应用[J]. 噪声与振动控制, 2020, 5(40): 264-272.
    [13] 沈哲, 杨志刚, 彭里奇, 等. 汽车风洞非均匀声场偏移导致纯音幅值变化[J]. 同济大学学报(自然科学版), 2022, 6(50): 915-920.
    [14] 万众, 王会康, 滕腾, 等. 声探测系统防风罩降噪特性研究[J]. 电声技术, 2022, 46(8): 44-47.
    [15] Etkin B. Acoustic Radiation from a Stationary Cylinder in a Fluid Stream (Aeolian Tones)[J]. The Journal of the Acoustical Society of America, 1957, 29(1): 30. doi: 10.1121/1.1908673
    [16] 张扬, 沈国辉, 余世策, 等. 输电线风噪声的声学风洞试验[J]. 浙江大学学报(工学版), 2017, 51(8): 1494-1499.
    [17] 马大猷. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社, 2022.
    [18] 沈国辉, 张扬, 余世策, 等. 光滑圆柱风噪声的风洞试验研究[J]. 振动与冲击, 2018, 37(7): 85-90.
    [19] 陈荣钱, 伍贻兆, 夏健. 应用随机模型方法预测汽车风噪声[J]. 计算物理. 2013, 1(30): 98-103.
    [20] 张永强, 熊小平, 韦磊, 等. MEMS麦克风噪声失效分析[J]. 电声技术, 2018, 42(1): 28-32,46.
    [21] 张珣, 杜婉芬. RLS双麦克风噪声对消技术[J]. 科技风, 2018(28): 68-69.
    [22] 陈浩, 鲍长春, 夏丙寅. 双麦克风噪声消除的高斯混合模型法[J]. 信号处理, 2014(7): 813-821.
    [23] 刘先锋, 王学军, 陈晓宇, 等. 汽车道路风噪声测试及改进[J]. 噪声与振动控制, 2014(3): 111-114.
    [24] 赖颖. 车门尺寸偏差风噪声形成机理及气密性分析[J]. 汽车实用技术, 2018(18): 102-105,111.
    [25] 赖小强, 李双田. 双传声器系统中的风噪声抑制方法研究[J]. 信号处理, 2013, 29(4): 436-442.
    [26] 蔺磊, 顾彦, 潘雷, 等. 整车风噪声性能的声学风洞试验分析[J]. 汽车工程学报, 2019, 9(3): 209-213.
    [27] 宋妙妍, 陈宏清, 陈宝, 等. 某SUV后视镜降噪设计与风洞试验验证[J]. 汽车工程, 2023, 45(4): 681-689,707.
    [28] 王志亮, 刘波, 桑建兵, 等. 汽车风噪声产生机理研究[J]. 拖拉机与农用运输车, 2008, 35(6): 35-37,40.
    [29] 田伟. 汽车风噪声的数值仿真与分析[D]. 南京: 南京理工大学, 2006.
    [30] 乔健, 王建明. 抑制风噪声的频点离散值加权GCC-PHAT时延估计算法[J]. 电子技术应用, 2018, 44(3): 72-76,80.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  56
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 录用日期:  2023-12-04
  • 修回日期:  2023-12-13
  • 网络出版日期:  2023-12-16

目录

    /

    返回文章
    返回